
Asking for Knowledge :
Training RL Agents to Query External Knowledge Using Language

Iou-Jen Liu * † 1 Xingdi Yuan * 2 Marc-Alexandre Côté * 2 Pierre-Yves Oudeyer † 2 3 Alexander G. Schwing 1

Abstract

To solve difficult tasks, humans ask questions to
acquire knowledge from external sources. In con-
trast, classical reinforcement learning agents lack
such an ability and often resort to exploratory be-
havior. This is exacerbated as few present-day en-
vironments support querying for knowledge. In or-
der to study how agents can be taught to query ex-
ternal knowledge via language, we first introduce
two new environments: the grid-world-based Q-
BabyAI and the text-based Q-TextWorld. In addi-
tion to physical interactions, an agent can query an
external knowledge source specialized for these
environments to gather information. Second, we
propose the ‘Asking for Knowledge’ (AFK) agent,
which learns to generate language commands to
query for meaningful knowledge that helps solve
the tasks. AFK leverages a non-parametric mem-
ory, a pointer mechanism and an episodic explo-
ration bonus to tackle (1) a large query language
space, (2) irrelevant information, (3) delayed re-
ward for making meaningful queries. Extensive
experiments demonstrate that the AFK agent out-
performs recent baselines on the challenging Q-
BabyAI and Q-TextWorld environments. The code
of the environments and agents are available at
https://ioujenliu.github.io/AFK.

1. Introduction
To solve challenging tasks, humans query external knowl-
edge sources, i.e., we ask for help. We constantly create
knowledge sources (e.g., manuals), as it is often more eco-
nomical in the long term than users exploring via trial and
error. Moreover, cognitive science research (Maratsos, 2007;

*Equal contribution †Work partially done while visiting
MSR 1University of Illinois at Urbana-Champaign, IL, U.S.A.
2Microsoft Research, Montréal, Canada 3Inria, France. Corre-
spondence to: Iou-Jen Liu <iliu3@illinois.edu>, Xingdi Yuan
<eric.yuan@microsoft.com>.

Task: Find the key to the door, and find Mary's toy.

1. What’s
Mary’s toy?2. Where’s

green ball?

3. Where’s
yellow star?

4. What’s
the key?

1. Mary’s toy is
a green ball.

2. The green ball is
in the blue chest.

3. I don’t know.

4. The green key.

Figure 1. Proposed Q-BabyAI. Here the agent has to query the
knowledge source to succeed.

Mills et al., 2010; Ronfard et al., 2018) showed that learning
to ask questions and to interpret answers is key in a child’s
development of problem-solving skills. Consequently, we
hypothesize that autonomous agents can address more com-
plicated tasks if they can successfully learn to query external
knowledge sources. For querying, it seems desirable to use
some form of language. Not only does this allow to leverage
existing knowledge sources built for humans, it also enables
us to interpret the queries.

However, the literature to teach agents to query external
knowledge sources via language is scarce. Nguyen &
Daume (2019) consider agents that can request help in visual
navigation tasks. The agent can issue a ‘help’ signal, and
expects the environment to provide a full solution. Hence,
agents learn when to query, but not what to query and how
to deal with an answer rather than an entire solution. Zhong
et al. (2020) show that agents can better address novel tasks
when a manual is available. However, the manual contains
all relevant information and agents don’t need to learn to
query. Kovac et al. (2021) discuss the open challenge of
building agents that learn social interaction skills mixing
physical action and language. They show that state-of-the-
art deep reinforcement learning systems cannot learn several
kinds of social interaction skills. Instead of social skills, we
focus on the open challenge of learning to ask for knowledge
using language and propose an effective approach.

To deliberately study how agents can be taught to
query, we introduce two environments: the grid-world-

https://ioujenliu.github.io/AFK

Asking for Knowledge (AFK)

Object in Box Danger Go to Favorite Open Door Q-TextWorld

Find Mary’s toy Avoid danger zone, and go to
the green square

Go to Jack’s favorite toy Find the key, and open the
blue door

Agent navigates to the blue door

Collect some hot pepper to prepare a
delicious meal. Ask Charlie to know
where to find each ingredient and for
the recipe directions.

Agent wins when it uses green
key to open the blue door

Agent wins when it moves to
the green ball

Agent wins when it moves to the
green square without stepping
onto yellow tiles

Agent wins when it grasps the
blue ball

Agent wins when sliced hot
pepper is in its inventory

Agent navigates to green key…
Agent navigates to grey box…

Agent navigates to green square…

Agent navigates to green ball…

…

You are in a kitchen. A messy kind of place.

You see a closed fridge. You can make out an
oven. Look over there! a counter. The counter
is wooden. However, the counter, like an
empty counter, has nothing on it. Oh! Why
couldn't there just be stuff on it? You can
see a stove. The stove appears to be empty.
You see a griller. Is this what you came to
TextWorld for? This... griller?

There is a knife on the floor.
>

Mary’s toy is a blue ball

Jack’s suitcase is a grey box

Blue ball is in Jack’s suitcase
Green ball is in room2

Jack’s favorite toy is a
green ball

Hot pepper needs to be
sliced, use a knife to cut it

Danger zone is yellow

Green key to the blue door

I don’t know

Hot pepper is in the fridge

What’s Jack’s toy

What’s Jack’s suitcase

Where’s blue ball

What’s danger zone
What’s Mary’s toy

Where’s green ball

What’s key

What’s key Ask Charlie how’s hot pepper

Ask Charlie where’s hot pepper

Figure 2. Querying interactions in Q-BabyAI and Q-TextWorld. We illustrate standard physical interactions as gray colored stage directions
and highlight the questions (green) and oracle replies (blue) upon receiving the instruction (red).

based Q-BabyAI, illustrated in Fig. 1 and inspired by
BabyAI (Chevalier-Boisvert et al., 2019), and the text-based
Q-TextWorld inspired by TextWorld (Côté et al., 2018). In
addition to physical interactions, an agent can use a query
language to gather information related to a task. Impor-
tantly, in Q-BabyAI and Q-TextWorld, the knowledge source
is designed to be task-agnostic, i.e., it replies to all queries,
even if irrelevant to the task at hand. This mimics many real-
world knowledge sources, e.g., search engines, which return
results based on a user’s query, regardless of relevance.

When training agents to query external knowledge via lan-
guage, three main challenges arise: (1) The action space
for generating a language query is large. Even with a
template language, the action space grows combinatorially
and large action spaces remain a challenge for reinforce-
ment learning (Dulac-Arnold et al., 2016; Ammanabrolu &
Hausknecht, 2020). (2) Irrelevant knowledge queried from
a task-agnostic knowledge source can confuse agents. As a
result, learning to ask meaningful questions is critical. This
challenge is in line with the cognitive science finding (Mills
et al., 2010) that children must learn to ask questions that
result in answers with useful information. (3) Rewards for
queries are often significantly delayed and sparse. Since the
knowledge source provides specific information rather than
a solution, agents have to also understand how to use the
acquired information before receiving a significant reward.
This mimics the discovery of Mills et al. (2010) that children
must learn to use the received information.

To address the three challenges, we propose the ‘asking
for knowledge’ (AFK) agent. The AFK agent is equipped

with a pointer mechanism and a non-parametric memory,
which we refer to as a ‘notebook,’ while using an episodic
exploration strategy. The pointer mechanism addresses the
challenge of a combinatorially growing action space by
restricting the available actions based on the current context.
The notebook keeps track of all the information related to
the task at hand. The episodic exploration strategy deals
with delayed and sparse rewards by issuing an exploration
bonus when the agent makes novel and meaningful queries,
inspired by information-seeking and epistemic curiosity
observed in children (Engel, 2011; Gottlieb et al., 2013;
Kidd & Hayden, 2015).

Comparing this AFK agent to recent baselines on Q-BabyAI
and Q-TextWorld, we observe the AFK agent to ask more
meaningful questions and to better leverage the acquired
knowledge to solve the tasks.

2. Queryable Environments
We first discuss a reinforcement learning (RL) context where
agents can query. We then introduce two new environments,
Q-BabyAI and Q-TextWorld, each expanded from prior work
(Chevalier-Boisvert et al., 2019; Côté et al., 2018).

2.1. Problem Setting

Reinforcement learning considers an agent interacting
with an environment and collecting reward over discrete
time. The environment is formalized by a partially ob-
servable Markov Decision Process (POMDP) (Sutton &
Barto, 2018). Formally, a POMDP is defined by a tuple

Asking for Knowledge (AFK)

(S,A,Z, T ,O, R, γ,H). S is the state space. A is the
action space. Z is the observation space. At each time
step t, the agent receives an observation ot ∈ Z following
the observation function O ∶ S → Z and selects an action
at ∈ A. The transition function T maps the action at and
the current state st to a distribution over the next state st+1,
i.e., T ∶ S ×A → ∆(S). The agent receives a real-valued
reward rt according to a reward function R ∶ S ×A → R.
The agent’s goal is to maximize the return ∑H

t=0 γ
t
rt, where

γ is the discount factor and H is the horizon.

In a queryable environment, in addition to observations rep-
resenting its surrounding, an agent also receives a response
from the knowledge source upon issuing a query. Formally,
the observation space Z = Zenv × Zq is composed of Zenv
and Zq, representing the agent’s surrounding and the re-
ponse to a query, respectively.

Similarly, at each step, the agent’s action space A = Aphy ∪
Aq is composed of the physical action space Aphy supported
by classical RL environments (e.g., navigational actions,
toggle, grasp) and the query action space Aq .

Response Space Zq and Query Action Space Aq: As a
controllable starting point for this research, we equip the
environments with a queryable oracle knowledge source.
Specifically, whenever receiving a sequence of tokens as
a query, the oracle replies with a sequence of tokens. To
consider the compositionality of language while reducing
the burden of precise natural language generation, we define
a template format for queries and responses. This design is
also compatible with our plan of extending the knowledge
source to more natural forms like databases.

A query is defined as a 3-tuple of <func, adj, noun>.
In this 3-tuple, func is a function word selected from words
like where’s, what’s and how’s, which indicates the
function of a query (e.g., inquire about an object’s loca-
tion or affordances). The combination of an adjective (adj)
and a noun enables to refer to a unique object within the
environment.

Given a query, the oracle replies with a sequence of tokens.
For this, the oracle has access to a set of “knowledge facts”
associated with a particular instantiation of the environment.
The knowledge facts are key-value pairs, where keys are
the aforementioned 3-tuple of <func, adj, noun> and
values are sequences of tokens. If a given query matches
a key in the set of knowledge facts, the oracle will return
the corresponding value. Otherwise, the oracle returns the
message I don’t know.

Crucially, the set of knowledge facts is much larger than
necessary and irrelevant information is, by design, accessi-
ble to the agent. For instance, when tasked to find Mary’s
toy, information about Tim and Tim’s toy is also available
if queried. Gathering irrelevant information may lead to

confusion and subsequent sub-optimal decisions. Moreover,
some tasks require multi-hop information gathering (e.g.,
Object in Box), in which the agent must ask follow-up
questions to get all information needed to solve it.

Information Sufficiency: Practically, agents that can query
have two main advantages. First, for environments con-
taining sufficient information to be solved via exhaustive
exploration, querying can provide a more natural and ef-
fective way to gather information (e.g., reducing the policy
length). Second, for environments that only provide partial
information (e.g., an agent must recognize danger tiles by
trial-and-error, but danger tiles are randomly assigned per
episode), only querying will lead to successful completion
of the tasks.

To study both advantages, we augment BabyAI (Chevalier-
Boisvert et al., 2019) and TextWorld (Côté et al., 2018)
with a queryable knowledge source. We design tasks where
the environment contains sufficient information, but we
add knowledge facts which can help the agent to reduce
exploration if used adequately. In addition, we design other
tasks where agents can only succeed when they are able to
query. We provide details next.

2.2. Q-BabyAI

We first introduce Q-BabyAI, an extension of the BabyAI
environment (Chevalier-Boisvert et al., 2019). We devise
four level 1 tasks, namely Object in Box, Danger, Go to
Favorite and Open Door. In Fig. 2, we provide examples
of agents querying the knowledge source for each of the
level 1 tasks after receiving the goal instruction for that
episode. The four tasks permit to study the two advantages
mentioned above.

Specifically, both the Object in Box and Danger tasks can
only be solved 100% of the time when querying is used
to reveal the necessary knowledge — opening the wrong
box or stepping on the danger tile terminates the game. In
contrast, for the Go to Favorite and Open Door tasks, an
agent can exhaust the environment to accomplish the goals.
However, querying the knowledge source can greatly boost
the agent’s efficiency in both tasks. To prevent agents from
memorizing solutions (e.g., Mary’s toy is in the red box),
we randomly place objects and tiles in the environment, as
well as shuffle the entity names in every episode.

For the Object in Box and Danger tasks, we use a single-
room setting to separate the difficulties of navigation and
querying. In the Go to Favorite and Open Door tasks, we
use a multi-room setting. It is worth noting that in the Open
Door task, only querying at specific locations (i.e., next to
doors) can result in meaningful answers.

Having the four level 1 tasks defined, we increase the diffi-
culty by composing them into more challenging higher-level

Asking for Knowledge (AFK)

Section 3.2

𝑜"#$% 𝑓'()

𝑓$'*# 𝑓+**𝑓)#*

𝜋)-.*/0 𝜋1'%# 𝜋23$/ 𝜋+45 𝜋$'3$

𝑣"

Avoid danger zone and find Jack’s favorite toy.

NotebookSection 3.1

ℎ8ℎ9

ℎ:

ℎ;

Danger zone is yellow

Jack’s toy is a gray ball

Gray ball is in room1

𝑣<

Figure 3. An overview of the AFK agent. An embedding of the notebook (hs; see Sec. 3.1) and the environment (ho) is combined (hx)
for use in five policy functions. The policies for query generation make use of notebook information (hw) (see Sec. 3.2).

tasks. For level k tasks, we combine k different tasks se-
lected from the four level 1 tasks. As a result, we have six
level 2 tasks, four level 3 tasks and one level 4 task. As
an example, Open Door + Object in Box is a level 2 task
where the instruction could be Find the key to the
door, and find Mary’s toy. To solve the task, an
agent must figure out what is Mary’s toy, where it is, and
which key opens the locked door. We provide full details of
the Q-BabyAI tasks including statistics in Appendix A.1.

2.3. Q-TextWorld

We also develop Q-TextWorld, augmenting the TextWorld
environment (Côté et al., 2018) with a queryable knowledge
source. Given a few configuration parameters, Q-TextWorld
can generate new text-based games on the fly. Those inter-
active text environments are POMDPs with text-only ob-
servations and action space. Agents interact with the game
by issuing short text phrases as actions, then get textual
feedback. Text-based games provide a different view from
their vision- or grid-based counterparts that can make things
harder: 1) states are represented by highly abstracted signals
requiring language understanding to interpret correctly; 2)
the action space is combinatorially large due to composi-
tionality of language; 3) levels of verbosity, i.e., amount of
irrelevant text, can potentially confuse an agent.

In this work, we adopt the cooking themed setting from prior
work (Adhikari et al., 2020). An example is shown in Fig. 2.
In all games, an agent must gather cooking ingredients,
which are placed randomly in the room, either visible to
the agent, or hidden inside some containers that need to be
opened first. In a more difficult setting, each ingredient also
needs to be cut in a specific way (i.e., chopped, sliced,
or diced). The agent must query the knowledge source to
obtain that information, and then act accordingly by issuing
the right action while holding both the ingredient and a knife.
We provide full details of the Q-TextWorld tasks including
statistics in Appendix A.2.

Being consistent with the Q-BabyAI tasks, we study both
advantages of having a querying behavior — improve effi-

ciency and acquire necessary information. In games where
cutting is not involved, agents can rely on exhaustive ex-
ploration to gather all portable objects and win. However,
knowing what and where the required ingredients are can
improve efficiency significantly. In contrast, in games where
the ingredients need to be cut, an incorrect operation on the
ingredient terminates the game. Hence, querying the recipe
is the only way to perform above random.

3. Asking for Knowledge (AFK) Agent
In this section, we first present an overview of the ‘Asking
for Knowledge’ (AFK) agent before we discuss details.

Overview: As illustrated in Fig. 3, the goal of the agent is to
solve a task specified by an instruction. The language-based
instruction (sequence of tokens) v0 is provided at the start
of each episode. At each time step t, the agent receives an
environment observation o

env
t ∈ Zenv. Moreover, if the agent

issued a query at time step t − 1, it also receives a language
response vt ∈ Zq from the oracle, otherwise vt = ∅.

To reduce the amount of noisy information (i.e., vt unrelated
to that task at hand), we develop a non-parametric memory
for gathered information, which we refer to as a ‘notebook’.
The notebook is a collection of sets where related informa-
tion are being combined into a single set. The AFK agent
only looks at the set that contains the task instruction v0,
which determines relevance to the task. Upon processing the
notebook we obtain a representation hs (details in Sec. 3.1).

We combine the environment observation o
env
t and the note-

book representation hs relevant for the task via an aggre-
gator module (Perez et al., 2018; Vaswani et al., 2017).
Given the output of the aggregator, hx ∈ Rl, where l is
the encoding size, we use five heads to generate the phys-
ical actions and the language query actions. Specifically,
we use a switch head πswitch(⋅∣hx) ∶ Rl

→ ∆({0, 1}), a
physical action head πphy(⋅∣hx) ∶ Rl

→ ∆(Aphy), a func-
tion word head: πfunc(⋅∣hx) ∶ Rl

→ ∆(Vfunc), an adjec-
tive head πadj(⋅∣hx) ∶ Rl

→ ∆(Vadj), and a noun head
πnoun(⋅∣hx) ∶ Rl

→ ∆(Vnoun). Here, ∆(X) represents

Asking for Knowledge (AFK)

a distribution with support X , Aphy is the physical action
space, and Vfunc, Vadj, Vnoun are the function word, adjective,
and noun vocabulary spaces.

The switch head decides whether the agent executes a phys-
ical action or issues a query. Conceptually, the agent first
samples a value z according to πswitch(⋅∣hx). If z = 0, the
agent will sample a physical action aphy from πphy(⋅∣hx)
which is subsequently executed. In contrast, if z = 1, the
agent will issue the query [wfunc, wadj, wnoun] by sampling a
function word wfunc, an adjective wadj, and a noun wnoun in-
dependently from πfunc(⋅∣hx), πadj(⋅∣hx), and πnoun(⋅∣hx).
Note that the query action space Aq is large, which makes
RL training challenging. We provide detailed statistics in
Appendix A.

To alleviate issues due to the large action space, we adopt
a pointer network (See et al., 2017) to generate queries.
Specifically, the pointer network is restricted to ‘point’ to
words occurring in the notebook. This ensures that the
generated query uses words that are related to the already
gathered information (details in Sec. 3.2).

In addition, to deal with delayed and sparse rewards, we
propose an episodic exploration method which further in-
centivizes an agent to ask questions that are related to the
task at hand (details in Sec. 3.3).

3.1. Notebook

In the following, we discuss the notebook’s construction
and describe the computation of the encoding hs.

Notebook construction: Let F (for facts) denote the note-
book, which is a non-parametric memory. Formally, F is
a set of disjoint sets, i.e., F = {Ai}

∣F ∣−1
i=0 and Ai ∩ Aj =

∅,∀i ≠ j. For each set Ai, each element v ∈ Ai represents
either a response from the oracle or the task instruction.

At the beginning of each episode, the notebook F is ini-
tialized with a singleton A0 = {v0} that contains the task
instruction v0, i.e., F = {{v0}}. When an agent receives
a new response vi ≠ ∅, we first find all sets that contain
information related to vi in the notebook. Formally, we con-
struct an index set S that consists of the indices of related
sets, i.e., S = {j∣∃v ∈ Aj s.t. Sim(vi, v) ≥ α}, where
Sim(u, v) ∈ [0, 1] is a similarity function and α ∈ [0, 1]
is a threshold. We study both the uni-gram and bi-gram sim-
ilarity (Kondrak, 2005). If S is not empty, we combine all
the related sets and the new response vi to obtain a new set
Ak. Formally, Ak = ⋃j∈S Aj ∪ {vi}, where k = minj∈S j.
Then, all sets {Aj}j∈S are replaced with the new set Ak. If
the index set S is empty, we add Ak = {vi} to F , where k
is the next available index. Importantly, note that the task
instruction v0 is always part of the set A0.

Notebook encoding: To discard noisy information coming

from responses unrelated to the task at hand, the AFK agent
only considers the set A0 which contains the task instruc-
tion v0. We use a recurrent neural network fnote (Cho et al.,
2014) to encode each ‘note’ in A0, i.e., for each vi ∈ A0

(i ∈ {1, . . . , ∣A0∣}), we have hi = fnote(vi) ∈ R∣vi∣×l,
where ∣vi∣ is the number of words in vi and l is the hidden
dimension. To further encode the instruction related notes
(i.e., A0) as a whole, we use a Deep Set model fset (Za-
heer et al., 2017), i.e., hs = fset([h1, . . . , h∣A0∣]) ∈ Rl,
where hs is the resulting encoding. In addition, the input
observation o

env is encoded via a neural network fobs, i.e.,
ho = fobs(oenv) ∈ Rl, where ho is the resulting observation
encoding. An aggregator module is used to combine ho and
hs, i.e., hx = fatt(ho, hs) ∈ Rl.

3.2. Pointer Mechanism for Language Generation

To address the challenge of a combinatorially growing action
space, we develop a pointer mechanism for the policies πadj
and πnoun. Concretely, the pointer mechanism restricts the
AFK agent queries to use only the words appearing in the
set A0.

We achieve this by first applying a mask before computing
the policy distributions πadj and πnoun, i.e., πadj and πnoun
only have non-zero probability for adjectives and nouns in
the instruction related set of notes A0. We use the generation
process of the noun as an example. Let mnoun denote the
number of nouns in A0, and let hw ∈ Rmnoun×l denote the
word encodings of all nouns in A0. Using attention queries
q ∈ Rl and keys k ∈ Rmnoun×l such that

q = hx ⋅Wq, and k = hw ⋅Wk, (1)

with learnable parameters Wq,Wk ∈ Rl×l, we compute the
attention enoun over all nouns in A0 as

enoun = softmax(q ⋅ kT) ∈ Rmnoun . (2)

A distribution over the noun vocabulary, i.e., Vnoun, is then
constructed from enoun. Specifically, for each word w ∈

Vnoun, we have πnoun(w) = ∑mnoun
i=1 e

i
nounI[d(i) = w], where

d(i) maps the index i to the corresponding word in A0 and
e
i
noun represents the i-th element of enoun. I is the indicator

function. The pointer mechanism for πadj is constructed
similarly. We defer details to Appendix C.

3.3. Episodic Exploration

To deal with delayed and sparse rewards, inspired by Savi-
nov et al. (2019), we develop an episodic exploration mech-
anism to encourage the agent to ask questions related to the
task at hand.

At each time step, the agent receives reward r = r
env + b,

where r
env is the external reward and b is the bonus reward.

Asking for Knowledge (AFK)

Tasks No Query Query
Baseline AFK (Ours)

Lv. 1

♣ 50.5±2.0 49.8±1.2 100.0±0.0
♠ 68.3±2.4 73.8±1.2 100.0±0.0
♦ 98.9±0.8 99.3±0.3 100.0±0.0
♥ 99.7±0.3 85.3±22.3 100.0±0.0

Lv. 2

♣♠ 0.0±0.0 0.0±0.0 90.3±1.8
♣♦ 0.1±0.1 0.6±0.5 94.3±2.3
♣♥ 0.0±0.0 0.0±0.0 99.0±0.4
♠♦ 0.4±0.1 0.2±0.2 100.0±0.0
♠♥ 0.0±0.0 0.0±0.0 0.0±0.0
♦♥ 84.1±0.3 94.0±3.3 98.7±0.2

Lv. 3

♣♠♦ 0.0±0.0 0.0±0.0 0.15±0.2
♣♠♥ 0.0±0.0 0.0±0.0 0.0±0.0
♣♦♥ 0.0±0.0 0.0±0.0 2.1±0.8
♠♦♥ 4.3±1.0 4.4±0.8 4.8±0.9

Lv. 4 ♣♠♦♥ 0.0±0.0 0.0±0.0 0.0±0.1

Table 1. Success rate (%) on Q-BabyAI. ♣: Object in Box, ♠:
Danger, ♦: Go to Favorite, ♥: Open Door.

Tasks No Query Query Baseline AFK (Ours)

♦ 30.2±1.5 26.7±1.5 16.8±6.7
♥ 26.2±0.9 36.8±1.0 20.6±0.2

Table 2. Number of steps required to solve a task. ♦: Go to Fa-
vorite, ♥: Open Door.

A positive bonus reward b is obtained whenever a query’s
response vi ≠ ∅ expands the agent’s knowledge about the
task, i.e., A0. The reward is only given for new information.
Formally,

b = β(I[(vi ∈ A0) ∧ (vi ∉ A
′
0)]), (3)

where vi denotes a new response returned by the oracle, and
A

′
0 denotes the set from the previous game step containing

the task instruction v0. β > 0 is a scaling factor and I is the
indicator function.

4. Experimental Results
In this section, we present the experimental setup, evaluation
protocol, and our results on Q-BabyAI and Q-TextWorld.

Experimental Setup: We adopt the publicly available
BabyAI and TextWorld code released by the authors1,2 as
our non-query baseline system, denoted as No Query. We
consider a vanilla query agent (Kovac et al., 2021) (Query
Baseline), in which query heads are added to the baseline
agent to generate language queries. We refer to the pro-
posed agent via AFK, which is the agent with 1) notebook,
2) pointer mechanism, and 3) episodic exploration.

1BabyAI: github:mila-iqia/babyai
2TextWorld: github:xingdi-eric-yuan/qait public

Task No Query Query Baseline AFK (Ours)

Take 1 75.1±4.1 73.5±5.8 85.1±2.9
Take 2 24.0±6.6 13.7±8.5 61.9±6.5

Take 1 Cut 24.6±1.0 22.9±3.6 43.5±15.9
Take 2 Cut 0.0±0.0 0.0±0.0 0.0±0.0

Table 3. Success rate (%) on Q-TextWorld.

Task
AFK w/o
Notebook

AFK w/o
Pointer

Mechanism

AFK w/o
Episodic

Exploration

AFK
(Ours)

♣ 50.0±0.8 49.4±0.7 49.8±0.7 100.0±0.0
♠ 99.1±0.2 100.0±0.0 93.8±0.7 100.0±0.0
♦ 99.2±0.4 99.7±0.2 99.3±0.2 100.0±0.0
♥ 85.1±1.0 100.0±0.0 77.8±0.7 100.0±0.0
♣♥ 48.5±1.9 90.5±1.4 50.0±1.8 99.0±0.4

Mean 76.4 87.9 74.1 99.8

Table 4. Ablation Study. Success rate (%) on Q-BabyAI. ♣: Ob-
ject in Box, ♠: Danger, ♦: Go to Favorite, ♥: Open Door.

We follow the original training protocols used in BabyAI
and TextWorld. Specifically, we train all agents in Q-
BabyAI environments with proximal policy optimization
(PPO) (Schulman et al., 2017) for 20M - 50M environment
steps, depending on the tasks’ difficulty. For Q-TextWorld
agents, we use the Deep Q-Network (Mnih et al., 2013; Hes-
sel et al., 2018) and the agents are trained for 500K episodes.
We provide implementation details in Appendix C.

Evaluation Protocol: In Q-BabyAI, the policy is evalu-
ated in an independent evaluation environment every 50
model updates and each evaluation consists of 500 evalu-
ation episodes. To ensure a fair and rigorous evaluation,
we follow the evaluation protocols suggested by Hender-
son et al. (2017); Colas et al. (2018) and report the ‘final
metric’. The final metric is the average evaluation success
rate of the last ten models in the training process, i.e., av-
erage success rate of the last 5000 evaluation episodes. In
Q-TextWorld, we report the final running average training
scores with a window size of 1000. Note, in each episode,
entities are randomly spawned preventing agents from mem-
orizing training games. All experiments are repeated five
times with different random seeds.

Q-BabyAI Results: We first compare our AFK agent with
baselines on all level 1 and level 2 tasks of Q-BabyAI. The
final metrics and standard deviation of average evaluation
success rate are reported in Tab. 1. As shown in Tab. 1, for
level 1 and level 2 tasks, the AFK agent achieves signifi-
cantly higher success rates than the baselines, particularly
in Object in Box (♣) and Danger (♠) where information
has to be queried. This demonstrates that the AFK agent
asks more meaningful questions and successfully leverages

https://github.com/mila-iqia/babyai
https://github.com/xingdi-eric-yuan/qait_public

Asking for Knowledge (AFK)

0.0 0.5 1.0 1.5 2.0
Env. Steps 1e7

0.0
0.2
0.4
0.6
0.8
1.0

A
vg

. S
uc

c.
 R

at
e

Danger

0.0 0.5 1.0 1.5 2.0
Env. Steps 1e7

Obj in Box + Open Door

0 1 2 3 4 5
Episodes 1e5

Take 2

0 1 2 3 4 5
Episodes 1e5

Take 1 Cut

AFK
Query Base
No Query

Figure 4. Training curves of AFK, non-query baseline, query baseline on Q-BabyAI (left) and Q-TextWorld (right).

Target Task Source Tasks Succ. (%) Eps. Len.
♣♠ ♠♦+♦♣ 22.1±0.7 32.0±0.3

♠♦ ♠♣+♦♣ 35.6±2.1 71.6±1.1

Table 5. Zero-shot generalization study of AFK.

Task ∣Qt∣ Precision Recall F1
♣♥ 5 0.804 0.823 0.812
♦♥ 4 0.771 0.560 0.601
♠♦ 3 0.989 0.989 0.989

Table 6. Query quality of AFK. ♣: Object in Box, ♠: Danger, ♦:
Go to Favorite, ♥: Open Door.

oracle replies to solve tasks. We provide extra analysis to
support this in a later subsection. In addition, we observe
that in tasks where the instruction provides sufficient in-
formation, e.g., Go to Favorite (♦) and Open Door (♥),
all agents are able to solve the tasks. However, as shown
in Tab. 2, an AFK agent needs fewer steps to solve the tasks.
This suggests that meaningful queries can result in better
efficiency. Training curves are shown in Fig. 4. See Ap-
pendix E for training curves and results of all experiments.

To show the limitation of the proposed approach, we run
experiments on the very challenging level 3 and level 4
tasks of Q-BabyAI. As shown in Tab. 1, AFK as well as all
baselines fail to solve the level 3 and level 4 tasks due to the
tasks’ high complexity and very sparse rewards. This shows
that training RL agents to query in language is still a very
challenging and open problem which needs more attention
from our community.

Q-TextWorld Results: We compare AFK with the baseline
agents on Q-TextWorld in Tab. 3. Specifically, we con-
duct experiments on four settings with gradually increasing
difficulty. Here, ‘Take k’ denotes that an agent needs to
collect k food ingredients, which may spawn in containers
and are hence invisible to the agent before the container is
opened. ‘Cut’ indicates that the collected food ingredients
need to be cut in specific ways, for which the recipe needs

to be queried. As shown in Tab. 3, AFK significantly out-
perform the baselines on three of the tasks. Analogously
to Q-BabyAI experiments, the No Query agent sometimes
outperforms the Query Baseline agent. We believe this is
caused by 1) the larger action space of the Query Baseline
compared to No Query, and 2) a missing mechanism helping
the agent to benefit from queries — together they reduce the
Query Baseline’s chance to experience meaningful trajecto-
ries. We observe that none of the agents can get non-zero
scores on the Take 2 Cut task. We investigate the agents’
training reward curves (Fig. 10, Appendix E): while the
baselines get 0 reward, AFK actually learns to obtain higher
reward. We suspect that due to the richer entity presence
in Q-TextWorld, and the resulting larger number of valid
questions (connected to A0), AFK may exploit the explo-
ration bonus and ask more questions than necessary. This
suggests that better reward assignment methods are needed
for agents to perform in more complex environments.

Ablation Study: We perform an ablation study to examine
the effectiveness of the proposed 1) notebook, 2) pointer
mechanism, and 3) episodic exploration. For this we use
various level 1 and level 2 Q-BabyAI tasks. The results are
reported in Tab. 4. As shown in Tab. 4, removing the note-
book, the pointer mechanism, or the episodic exploration
results in the success rate dropping by 22.9%, 11.4%, and
25.2% on average. This demonstrates that all three proposed
components are essential for an AFK agent to successfully
generate meaningful queries and solve tasks.

Generalization: To assess an AFK agent’s capability of
making meaningful queries and solve different, novel, un-
seen tasks, we perform a generalization study. Specifically,
we train AFK agents on a set of level 2 source tasks. Then
the trained AFK agent is tested on an unseen level 2 target
task (new combination of sub-tasks used in training). The
results are summarized in Tab. 5. As shown in Tab. 5, upon
training on source tasks, an AFK agent achieves 22.1% and
35.6% success rate on the level 2 target tasks ‘Object in
Box + Danger’(♣♠) and ‘Danger + Go to Favorite’(♠♦),
which the agent has never seen during training. In contrast,

Asking for Knowledge (AFK)

the Query Baseline only achieves a 0.0% and 0.2% success
rate on the target tasks after training 20M steps directly on
the target tasks (Tab. 1).

Query Quality: To gain more insights, we study the quality
of the queries issued by an agent. Each episode of our tasks
is associated with a set of queries Qt which are useful for
solving the task. If an agent issues a query q ∈ Qt, the
query is considered ‘good.’ We refer to the number of good
queries (not counting duplicates) and total number of queries
(counting duplicates) generated by the agent in one episode
as ng and ntot. We report the average precision, recall, and
F1 score (Sasaki, 2007) of the generated queries over 200
evaluation episodes. Specifically, precision =

ng

ntot
, recall =

ng

∣Qt∣
, and F1 score is the harmonic mean of precision and

recall. As shown in Tab. 6, the AFK agent achieves high F1
scores across various tasks. In contrast, the Query Baseline
converges to a policy that does not issue any query and thus
has zero precision and recall in all tasks. This demonstrates
AFK’s ability to learn to ask relevant questions.

5. Related Work
Information Seeking Agents: In recent years a host of
works discussed building of information seeking agents.
Nguyen & Daume (2019) propose to leverage an oracle
in 3D navigation environments. The oracle is activated in
response to a special signal from the agent and provides a
language instruction describing a subtask the agent could
follow. Kovac et al. (2021) design grid-world tasks similar
to ours, but focus on the social interaction perspective. For
instance, some agents are required to emulate their social
peers’ behavior to successfully communicate with them.
Yuan (2021); Nakano et al. (2021) propose agents that can
generate sequences of executable commands (e.g., Ctrl+F
a token) to navigate through partially observable text envi-
ronments for information gathering. The line of research on
curiosity driven exploration and intrinsic motivation shares
the same overall goal to seek information (Oudeyer et al.,
2007; Oudeyer & Kaplan, 2007). A subset of them, count-
based exploration methods, count the visit of observations or
states and encourage agents to gather more information from
rarely experienced states (Bellemare et al., 2016; Ostrovski
et al., 2017; Savinov et al., 2019; Liu et al., 2021). Our
work also loosely relates to the active learning paradigm,
where a system selects training examples wisely so that it
achieves better model performance, while also consuming
fewer training examples (Cohn et al., 1994; Bachman et al.,
2017; Fang et al., 2017). Different from existing work, we
aim to study explicit querying behavior using language. We
design tasks where querying behavior can either greatly
improve efficiency or is needed to succeed.

Reinforcement Learning with External Knowledge:

Training reinforcement learning agents which use external
knowledge sources also received attention recently (He et al.,
2017; Bougie & Ichise, 2017; Kimura et al., 2021; Argerich
et al., 2020; Zhong et al., 2020). Various forms of external
knowledge sources are considered. He et al. (2017) consider
a set of documents as external knowledge source. An agent
needs to learn to read the documents to solve a task. Bougie
& Ichise (2017) consider environment information obtained
by an object detector as external knowledge. They show
that the additional information form the detector enables
agents to learn faster. Kimura et al. (2021) consider a set
of detailed instructions as knowledge source. They propose
an architecture to aggregate the given external knowledge
with the RL model. The aforementioned works assume the
external knowledge is given and the agent doesn’t need to
learn to query. In contrast, we consider a task-agnostic inter-
active knowledge source. In our Q-BabyAI and Q-TextWorld
environments, an agent must learn to actively execute mean-
ingful queries in language to solve a task.

Question Generation and Information Retrieval: Ques-
tion generation is a thriving direction at the intersection of
multiple areas like natural language processing and infor-
mation retrieval. In the machine reading comprehension
literature, Du et al. (2017); Yuan et al. (2017); Jain et al.
(2018) propose to reverse question answering: given a docu-
ment and a phrase, a model is required to generate a ques-
tion. The question can be answered by the phrase using
the document as context. In later work, Scialom & Staiano
(2020) define curiosity-driven question generation. Query
reformulation is a technique which aims to obtain better an-
swers from the knowledge source (e.g., a search engine) by
training agents to modify questions (Nogueira & Cho, 2017;
Buck et al., 2018). Another loosely related area is multi-hop
retrieval (Das et al., 2018; Xiong et al., 2021; Feldman &
El-Yaniv, 2019), where a large scale supporting knowledge
source is involved and systems must gather information in
a sequential manner. Inspired by these works, we leverage
properties of language such as compositionality, to help
form a powerful query representation that is manageable by
RL training.

6. Limitations and Future Work
In this section, we conclude by discussing limitations of this
work and future directions.

Environments: As an initial attempt to study agents that
learn to query knowledge sources with language, we settled
on oracle-based knowledge sources. This ensures better
experimental controllability and reproducibility. However,
it can be improved in multiple directions.
1. Beyond the use of hand-crafted key-value pairs as the
knowledge source, a set of more realistic knowledge sources
can be considered. For instance, databases can be queried

Asking for Knowledge (AFK)

using similar template language (Zhong et al., 2017); an
information retrieval system or a pre-trained question an-
swering system can be used to extract knowledge from
large scale language data (Lewis et al., 2021; Borgeaud
et al., 2021); a search engine is naturally queryable (Nakano
et al., 2021); pre-trained language models can be queried
via prompt engineering (Huang et al., 2022); humans can
also be a great knowledge source (Kovac et al., 2021).
2. The query grammar can be extended to be more nat-
ural and informative (e.g., Where’s Mary’s toy and
where can I find it?).
3. We plan to include tasks that require non-linear reasoning.
This will further decrease agents’ incentive to memorize an
optimal trajectory, and presumably increase generalizability.

Agent design: For agents, future directions include:
1. When the state space is large (e.g., in Q-TextWorld),
agents sometimes keep on querying different question to
exploit the exploration bonus. This demands a better reward
assignment strategy, since agents performing in more com-
plex environments may encounter this issue too.
2. It is worth exploring other structured knowledge represen-
tations (Ammanabrolu & Hausknecht, 2020) and parametric
memories (Weston et al., 2015; Munkhdalai et al., 2019)
beyond the notebook we used.
3. Asking questions essentially serves to reduce entropy.
One could further use exploration strategies that maximize
information gain (Houthooft et al., 2016).

Overall, we are excited by the challenges and opportuni-
ties posed by agents that are able to learn to query external
knowledge while acting in their environments. We strive
to call attention from researchers for the development of
agents capable of querying external knowledge sources —
we believe this is a strong and natural skill. We make an ini-
tial effort towards this goal, which hopefully can be proven
to be valuable and helpful to the community.

7. Acknowledgement
This work is supported in part by Microsoft Research, the
National Science Foundation under Grants No. 1718221,
2008387, 2045586, 2106825, MRI #1725729, NIFA award
2020-67021-32799, and AWS Research Awards.

References
Adhikari, A., Yuan, X., Côté, M.-A., Zelinka, M., Rondeau,

M.-A., Laroche, R., Poupart, P., Tang, J., Trischler, A.,
and Hamilton, W. Learning dynamic belief graphs to
generalize on text-based games. In Proc. NeurIPS, 2020.

Ammanabrolu, P. and Hausknecht, M. Graph constrained
reinforcement learning for natural language action spaces.
In ICLR, 2020.

Argerich, M. F., Furst, J., and Cheng, B. Tutor4rl: Guid-
ing reinforcement learning with external knowledge. In
arXiv., 2020.

Ba, L. J., Kiros, J. R., and Hinton, G. E. Layer normalization.
In arXiv., 2016.

Bachman, P., Sordoni, A., and Trischler, A. Learning algo-
rithms for active learning. In Proc. ICML, 2017.

Bellemare, M., Srinivasan, S., Ostrovski, G., Schaul, T.,
Saxton, D., and Munos, R. Unifying Count-Based Ex-
ploration and Intrinsic Motivation. In Proc. NeurIPS,
2016.

Borgeaud, S., Mensch, A., Hoffmann, J., Cai, T., Ruther-
ford, E., Millican, K., Driessche, G. v. d., Lespiau, J.-B.,
Damoc, B., Clark, A., et al. Improving language models
by retrieving from trillions of tokens. In arXiv., 2021.

Bougie, N. and Ichise, R. Deep reinforcement learning
boosted by external knowledge. In arXiv., 2017.

Buck, C., Bulian, J., Ciaramita, M., Gajewski, W., Ges-
mundo, A., Houlsby, N., and Wang, W. Ask the right
questions: Active question reformulation with reinforce-
ment learning. In ICLR, 2018.

Chevalier-Boisvert, M., Bahdanau, D., Lahlou, S., Willems,
L., Saharia, C., Nguyen, T. H., and Bengio, Y. Babyai:
A platform to study the sample efficiency of grounded
language learning. In ICLR, 2019.

Cho, K., van Merriënboer, B., Gulcehre, C., Bahdanau, D.,
Bougares, F., Schwenk, H., and Bengio, Y. Learning
phrase representations using RNN encoder–decoder for
statistical machine translation. In Proc. EMNLP, 2014.

Chung, J., Gulcehre, C., Cho, K., and Bengio, Y. Empirical
evaluation of gated recurrent neural networks on sequence
modeling. In arXiv., 2014.

Cohn, D., Atlas, L., and Ladner, R. Improving generaliza-
tion with active learning. Machine learning, 1994.

Colas, C., Sigaud, O., and Oudeyer, P.-Y. GEP-PG: Decou-
pling exploration and exploitation in deep reinforcement
learning algorithms. In Proc. ICML, 2018.

Côté, M.-A., Ákos Kádár, Yuan, X. E., Kybartas, B., Barnes,
T., Fine, E., Moore, J., Hausknecht, M., Asri, L. E.,
Adada, M., Tay, W., and Trischler, A. Textworld: A
learning environment for text-based games. In Computer
Games Workshop at ICML/IJCAI, 2018.

Das, R., Dhuliawala, S., Zaheer, M., Vilnis, L., Durugkar, I.,
Krishnamurthy, A., Smola, A., and McCallum, A. Go for
a walk and arrive at the answer: Reasoning over paths in
knowledge bases using reinforcement learning. In Proc.
ICLR, 2018.

Asking for Knowledge (AFK)

Du, X., Shao, J., and Cardie, C. Learning to ask: Neural
question generation for reading comprehension. In Proc.
ACL, 2017.

Dulac-Arnold, G., Evans, R., van Hasselt, H., Sunehag, P.,
Lillicrap, T., Hunt, J., Mann, T., Weber, T., Degris, T., and
Coppin, B. Deep reinforcement learning in large discrete
action spaces. In Proc. ICML, 2016.

Engel, S. Children’s need to know: Curiosity in schools.
Harvard educational review, 2011.

Fang, M., Li, Y., and Cohn, T. Learning how to active
learn: A deep reinforcement learning approach. In Proc.
EMNLP, 2017.

Feldman, Y. and El-Yaniv, R. Multi-hop paragraph retrieval
for open-domain question answering. In Proc. ACL, 2019.

Gottlieb, J., Oudeyer, P.-Y., Lopes, M., and Baranes, A.
Information-seeking, curiosity, and attention: computa-
tional and neural mechanisms. Trends in cognitive sci-
ences, 2013.

He, J., Ostendorf, M., and He, X. Reinforcement learning
with external knowledge and two-stage q-functions for
predicting popular reddit threads. In arXiv., 2017.

Henderson, P., Islam, R., Bachman, P., Pineau, J., Precup,
D., and Meger, D. Deep reinforcement learning that
matters. In Proc. AAAI, 2017.

Hessel, M., Modayil, J., Van Hasselt, H., Schaul, T., Ostro-
vski, G., Dabney, W., Horgan, D., Piot, B., Azar, M., and
Silver, D. Rainbow: Combining improvements in deep
reinforcement learning. In Proc. AAAI, 2018.

Hochreiter, S. and Schmidhuber, J. Long short-term memory.
Neural Computation, 1997.

Houthooft, R., Chen, X., Chen, X., Duan, Y., Schulman,
J., De Turck, F., and Abbeel, P. Vime: Variational in-
formation maximizing exploration. In Proc. NeurIPS,
2016.

Huang, W., Abbeel, P., Pathak, D., and Mordatch, I. Lan-
guage models as zero-shot planners: Extracting action-
able knowledge for embodied agents. In arXiv., 2022.

Jain, U., Lazebnik, S., and Schwing, A. G. Two can play
this Game: Visual Dialog with Discriminative Question
Generation and Answering. In Proc. CVPR, 2018.

Kidd, C. and Hayden, B. Y. The psychology and neuro-
science of curiosity. Neuron, 2015.

Kimura, D., Chaudhury, S., Wachi, A., Kohita, R., Munawar,
A., Tatsubori, M., and Gray, A. Reinforcement learning
with external knowledge by using logical neural networks.
In arXiv., 2021.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. In Proc. ICLR, 2015.

Kondrak, G. N-gram similarity and distance. In SPIRE,
2005.

Kovac, G., Portelas, R., Hofmann, K., and Oudeyer, P.-Y.
Socialai: Benchmarking socio-cognitive abilities in deep
reinforcement learning agents. In arXiv., 2021.

Lewis, P., Stenetorp, P., and Riedel, S. Question and an-
swer test-train overlap in open-domain question answer-
ing datasets. In Proc. EACL, 2021.

Liu, I.-J., Jain, U., Yeh, R., and Schwing, A. G. Cooper-
ative Exploration for Multi-Agent Deep Reinforcement
Learning. In Proc. ICML, 2021.

Maratsos, M. P. Children’s questions: A mechanism for
cognitive development: Commentary. Monographs of the
Society for Research in Child Development, 2007.

Mills, C. M., Legare, C. H., Bills, M., and Mejias, C.
Preschoolers use questions as a tool to acquire knowl-
edge from different sources. Journal of Cognition and
Development, 2010.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A.,
Antonoglou, I., Wierstra, D., and Riedmiller, M. Playing
atari with deep reinforcement learning. In arXiv., 2013.

Munkhdalai, T., Sordoni, A., wang, T., and Trischler, A.
Metalearned neural memory. In Proc. NeurIPS, 2019.

Nakano, R., Hilton, J., Balaji, S., Wu, J., Ouyang, L.,
Kim, C., Hesse, C., Jain, S., Kosaraju, V., Saunders, W.,
Jiang, X., Cobbe, K., Eloundou, T., Krueger, G., Button,
K., Knight, M., Chess, B., and Schulman, J. Webgpt:
Browser-assisted question-answering with human feed-
back. In arXiv., 2021.

Nguyen, K. and Daume, H. Help, anna! visual naviga-
tion with natural multimodal assistance via retrospective
curiosity-encouraging imitation learning. In EMNLP,
2019.

Nogueira, R. and Cho, K. Task-oriented query reformulation
with reinforcement learning. In Proc. EMNLP, 2017.

Ostrovski, G., Bellemare, M. G., van den Oord, A., and
Munos, R. Count-based exploration with neural density
models. In Proc. ICML, 2017.

Oudeyer, P.-Y. and Kaplan, F. What is intrinsic motivation?
a typology of computational approaches. Frontiers in
Neurorobotics, 2007.

Oudeyer, P.-Y., Kaplan, F., and Hafner, V. V. Intrinsic
motivation systems for autonomous mental development.
IEEE transactions on evolutionary computation, 2007.

Asking for Knowledge (AFK)

Perez, E., Strub, F., de Vries, H., Dumoulin, V., and
Courville, A. Film: Visual reasoning with a general
conditioning layer. In AAAI, 2018.

Ronfard, S., Zambrana, I. M., Hermansen, T. K., and Kele-
men, D. Question-asking in childhood: A review of the
literature and a framework for understanding its develop-
ment. Developmental Review, 49:101–120, 2018.

Sasaki, Y. The truth of the f-measure. In arXiv., 2007.

Savinov, N., Raichuk, A., Vincent, D., Marinier, R., Polle-
feys, M., Lillicrap, T., and Gelly, S. Episodic curiosity
through reachability. In Proc. ICLR, 2019.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms. In
arxiv, 2017.

Scialom, T. and Staiano, J. Ask to learn: A study on
curiosity-driven question generation. In Proc. COLING,
2020.

See, A., Liu, P. J., and Manning, C. D. Get to the point:
Summarization with pointer-generator networks. In ACL,
2017.

Sutton, R. S. and Barto, A. G. Reinforcement Learning: An
Introduction. The MIT Press, 2018.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. Attention
is all you need. In Proc. NeurIPS, 2017.

Weston, J., , Chopra, S., , and Bordes, A. Memory networks.
In Proc. ICLR, 2015.

Xiong, W., Li, X., Iyer, S., Du, J., Lewis, P., Wang, W. Y.,
Mehdad, Y., Yih, S., Riedel, S., Kiela, D., and Oguz, B.
Answering complex open-domain questions with multi-
hop dense retrieval. In Proc. ICLR, 2021.

Yuan, X. Interactive machine comprehension with dynamic
knowledge graphs. In EMNLP, 2021.

Yuan, X., Wang, T., Gulcehre, C., Sordoni, A., Bachman, P.,
Subramanian, S., Zhang, S., and Trischler, A. Machine
comprehension by text-to-text neural question generation.
In arXiv., 2017.

Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B.,
Salakhutdinov, R. R., and Smola, A. J. Deep sets. In
Proc. NeurIPS, 2017.

Zhong, V., Xiong, C., and Socher, R. Seq2sql: Generating
structured queries from natural language using reinforce-
ment learning. In arXiv., 2017.

Zhong, V., Rocktäschel, T., and Grefenstette, E. Rtfm:
Generalising to novel environment dynamics via reading.
In ICLR, 2020.

Asking for Knowledge (AFK)

Appendix: Asking for Knowledge : Training RL Agents to Query External
Knowledge Using Language
The appendix is structured as follows:

1. In Sec. A, we provide the details of each task in Q-
BabyAI and Q-TextWorld.

2. In Sec. B, we provide the model details of our AFK
agent.

3. In Sec. C, we provide the implementation and training
details for the AFK agent.

4. In Sec. D, we provide additional experimental results
on Q-BabyAI.

5. In Sec. E, we provide training curves for all experi-
ments on Q-BabyAI and Q-TextWorld.

The Python code of Q-BabyAI, Q-TextWorld, the AFK agent
and all baselines are available at https://ioujenliu.
github.io/AFK.

A. Environment and Task Details
A.1. Q-BabyAI

General information

Word vocabulary size 62
Function word vocabulary size (∣Vfunc∣) 2
Adjective vocabulary size (∣Vadj∣) 22
Noun vocabulary size (∣Vnoun∣) 24
of Physical action 7
Visual range 7 × 7
of object colors 6
of actionable object types 4
of names 2
of danger zone colors 2

Table 7. Statistics of the Q-BabyAI environment.

The general statistics of Q-BabyAI tasks are summarized
in Tab. 7. The statistics for each individual Q-BabyAI task
are summarized in Tab. 8, where ∣Qt∣ represents the number
of ‘good queries’ an agent should make to solve a task
efficiently. ‘Early Terminate’ indicates that an episode will
be terminated if the agent makes a mistake, e.g., stepping
on a danger zone or opening the wrong box. In addition, we
present the details of the four basic Q-BabyAI tasks in the
following.

Object in Box ♣: There are two suitcases in the environ-
ment. Each suitcase contains one toy. The instruction is
find <name>’s toy, where <name> is sampled from a
set of names at the start of each episode. However, the agent

doesn’t know what is the referred toy. Neither does it know
the content of each suitcase. The episode terminates when a
suitcase is opened by the agent. Therefore, the agent needs
to ask multiple question to figure out what the desired toy
is and which suitcase to open. If the opened suitcase con-
tains the desired toy, the agent receives a positive reward.
Otherwise, it doesn’t receive any reward.

Danger ♠: There are different colors of tiles in the envi-
ronment. One of the colors represents the danger zone.
The episode terminates if the agent steps on a danger
zone. The instruction is avoid danger zone, and go
to the green target square. However, the agent
doesn’t know what color represents the danger zone. There-
fore, to safely reach the target square and receive rewards,
the agent must ask the oracle for information on the danger
zone. Importantly, the color of the danger zone differs from
episode to episode.

Go to Favorite ♦: There are nine rooms in the environ-
ment. The instruction is Go to <name>’s favorite
toy, where <name> and <name>’s favorite toy are
sampled from a set of names and a set of toys at the start of
each episode. There are irrelevant objects scattered around
the environment. To solve the task efficiently, the agent
should issue queries to figure out what and where is the
referred toy. Note, if the agent doesn’t ask any question, it
can still solve the task, but in a much less efficient manner,
i.e., by exhaustively searching all rooms for the referred
toy. The agent receives positive reward when it goes to the
referred toy.

Open Door ♥: There are three keys and one door in the en-
vironment. One of the three keys could open the door. The
agent needs to find the right key and open the door to com-
plete the task and receive a positive reward. The instruction
is Find the key to the door. Note, the agent could
still complete the task without asking any question, i.e., by
exhaustively trying all keys.

A.2. Q-TextWorld

For all games, the objective is to find cooking ingredients
which are randomly hidden throughout the kitchen. Once
found, those ingredients may require some processing de-
pending on the task difficulty. Once all required ingredients
are in the player’s inventory and processed the right way, the
game terminates with a reward of 1. We provide statistics
of the Q-TextWorld environment in Tab. 9 and a transcript
of a game can be seen in Fig. 5.

Take [1/2]: In this task, the player has to find 1 or 2 ingre-
dients mentioned in the instruction. Ingredients are either

https://ioujenliu.github.io/AFK
https://ioujenliu.github.io/AFK

Asking for Knowledge (AFK)

Tasks ∣Qt∣ # of rooms room size
Early

Terminate

Lv. 1

♣ 3 1 9×9 True
♠ 1 1 7×7 True
♦ 2 9 5×5 False
♥ 1 2 7×7 False

Lv. 2

♣♠ 5 2 7×7 True
♣♦ 4 9 5×5 True
♣♥ 5 2 7×7 True
♠♦ 3 2 7×7 True
♠♥ 2 2 7×7 True
♦♥ 4 9 5×5 False

Lv. 3

♣♠♦ 5 2 7×7 True
♣♠♥ 6 3 7×7 True
♣♦♥ 5 9 5×5 True
♠♦♥ 4 3 7×7 True

Lv. 4 ♣♠♦♥ 7 9 7×7 True

Table 8. Statistics of each task in Q-BabyAI. ♣: Object in Box, ♠: Danger, ♦: Go to Favorite, ♥: Open Door.

Instruction: You find yourself at friend’s house and you are both hungry!
Collect some parsley to prepare a delicious meal. Ask Charlie to know
where to find each ingredient and for the recipe directions.

Description: You are in a kitchen. A messy kind of place.

You see a closed fridge. You can make out an oven. Look over there!
a counter. The counter is wooden. However, the counter, like an empty
counter, has nothing on it. Oh! Why couldn’t there just be stuff on it? You
can see a stove. The stove appears to be empty. You see a griller. Is this
what you came to TextWorld for? This... griller?

There is a cookbook on the floor.

Inventory: You are carrying: a knife.

Notebook: {”You find yourself . . . for the recipe directions.”}

Action 1: ask Charlie where’s the parsley

Feedback: The parsley is in the oven.

Notebook: {”You find yourself . . . for the recipe directions.”, ”The parsley
is in the oven.”}

Action 2: open oven

Feedback: Opened.

Action 3: take parsley

Feedback: Taken.

Action 4: ask Charlie how to cut the parsley

Feedback: The parsley needs to be sliced. Use a knife to cut it.

Notebook: {”You find yourself . . . for the recipe directions.”, ”The parsley
is in the oven.”, ”The parsley needs to be sliced. Use a knife to cut it.”}

Action 5: slice parsley

Feedback: Sliced.

Done after 5 steps. Score 1/1.

Figure 5. An excerpt from a Q-TextWorld game.

visible to the agent right from the start (e.g., on the table), or
hidden inside some container that needs to be opened first
(e.g., in the fridge). The player can ask the oracle where it
can find a particular object (e.g., Ask Charlie3 where’s
hot pepper?). In return, the oracle will indicate where
the object can be found (e.g., Hot pepper is in the
fridge.).

Take [1/2] + Cut: This task builds on top of Take
[1/2] where the ingredients also need to be cut the right
way (i.e., chopped, sliced, or diced). Each cutting
type is achieved by a different action command (i.e.,
chop X, slice X, or dice X) while the player is hold-
ing a knife in their inventory. The player can also ask
the oracle how to process a particular ingredient (e.g.,
Ask Charlie how to cut the hot pepper?

4). In
return, the oracle will indicate which type of cutting
is needed (e.g., Hot pepper needs to be sliced,
use a knife to cut it). Note, in the reported games,
the player always start with a kitchen knife in their inven-
tory.

B. Modeling Details
In this section, we provide detailed information of our
agents. In Appendix B.1, we describe our agent used for the
Q-BabyAI environments. In Appendix B.2, we describe our
agent used for the Q-TextWorld environments.

3In Q-TextWorld, the oracle is named Charlie.
4Nonessential words can be omitted, e.g., Ask Charlie

how hot pepper?

Asking for Knowledge (AFK)

General information

Word vocabulary size 835
Function word (∣Vfunc∣) 7
Adjective (∣Vadj∣) 38
Noun (∣Vnoun∣) 45
holders 6
ingredients 42
cuttable ingredients 26

Take 1

recipes 42
configurations 1242
Avg. instruction length 33.75 ± 0.44
Avg. walkthrough length 1.49 ± 0.50
Avg. nb. entities 8.63 ± 0.96
Avg. observation length 150.94 ± 65.43
Avg. valid actions per step 4.90 ± 1.29

Take 2

recipes 1722
configurations 1332156
Avg. instruction length 36.48 ± 0.60
Avg. walkthrough length 3.01 ± 0.70
Avg. nb. entities 10.69 ± 1.22
Avg. observation length 141.76 ± 57.56
Avg. valid actions per step 5.83 ± 1.65

Take 1 Cut

recipes 17576
configurations 1026
Avg. instruction length 33.80 ± 0.40
Avg. walkthrough length 2.50 ± 0.50
Avg. nb. entities 9.37 ± 0.84
Avg. observation length 143.00 ± 59.30
Avg. valid actions per step 5.45 ± 1.70

Take 2 Cut

recipes 274625000
configurations 859620
Avg. instruction length 36.61 ± 0.55
Avg. walkthrough length 5.00 ± 0.71
Avg. nb. entities 11.67 ± 1.13
Avg. observation length 138.59 ± 50.04
Avg. valid actions per step 7.73 ± 2.54

Table 9. Statistics of the Q-TextWorld environment.

B.1. AFK— Q-BabyAI

Observation Encoder (fobs): Following
BabyAI (Chevalier-Boisvert et al., 2019), the envi-
ronment observation o

env of Q-BabyAI is a 7 × 7 × 4
symbolic observation that contains a partial and local
egocentric view of the environment and the direction of
the agent. To encode o

env, we use a convolutional neural
network (CNN). Following Chevalier-Boisvert et al. (2019),
the observation encoder consists of three convolutional
layers. The first convolutional layer has 128 filters of size
8 × 8 and stride 8. The second and third convolutional
layers have 128 filters of size 3 × 3 and stride 1. Batch

normalization and ReLU unit are applied to the output
of each layer. At the end, a 2D pooling layer with filter
size 2 × 2 is applied to obtain the representation ho of 256
dimensions.

Word Encoder (fnote): Following Chevalier-Boisvert et al.
(2019), we use a gated recurrent unit (GRU) (Chung et al.,
2014) to perform word encoding. Specifically, for each
vi ∈ A0, we have hi = fgru(vi) ∈ R∣vi∣×l, where ∣vi∣ is
the number of words in vi and l = 128 is the encoding
dimension.

Aggregator (fatt): Following the No Query base-
line (Chevalier-Boisvert et al., 2019), the aggregator consists
of FiLM (Perez et al., 2018) modules, fFiLM, followed by
a long short term memory fLSTM (LSTM) (Hochreiter &
Schmidhuber, 1997). That is, fatt = fLSTM ◦ fFiLM. Specifi-
cally, we stack two FiLM modules. Each FiLM module has
128 filters with size 3 × 3 and the output dimension is 128.
The LSTM has 128 units.

Physical Action and Query Heads
(πswitch, πphy, πfun, πadj, πnoun): The switch head πswitch,
physical action head πphy, and function word head πfun are
two-layer MLPs with 64 units in each layer. The output
dimension of πswitch, πphy, πfun are 2, 7, 2. πadj and πnoun
are single-head pointer networks (Sec. 3.2) with hidden
dimension l = 128.

B.2. AFK— Q-TextWorld

Text Encoder (fobs, fnote):

Due to the nature of the Q-TextWorld environment, where
all inputs are in pure text, we share the two encoders (i.e.,
fobs and fnote) in our text agent.

We use a transformer-based text encoder, which consists
of an embedding layer and a transformer block (Vaswani
et al., 2017). Specifically, we tokenize an input sentence
(either a text observation or an entry in the notebook) with
the spaCy tokenizer.5 We convert the sequence of tokens
into 128-dimensional embeddings, the embedding matrix is
initialized randomly.

The transformer block consists of a stack of 4 convolutional
layers, a self-attention layer, and a 2-layer MLP with a
ReLU non-linear activation function in between. Within the
block, each convolutional layer has 128 filters, with a kernel
size of 7. The self-attention layers use a block hidden size
of 128, with 4 attention heads. Layer normalization (Ba
et al., 2016) is applied after each layer inside the block. We
merge positional embeddings into each block’s input.

Given an input o ∈ R∣o∣, where ∣o∣ denotes the number of
tokens in o, the encoder produces a representation ho ∈

5https://spacy.io/

https://spacy.io/

Asking for Knowledge (AFK)

R∣o∣×H , with H = 128 the hidden size.

In practice, we use mini-batches to parallelize the training.
Following standard NLP methods, we use special padding
tokens when the number of tokens within a batch are dif-
ferent, we use masks to prevent the model from taking the
padding tokens into computation. A text input o will be
associated with a mask mo ∈ R∣o∣.

Note for all the three agent variants (i.e., No Query, Query
Baseline and AFK), we use the concatenation of [feedback,
description, inventory] as the input to fobs. See examples of
feedback, description and inventory text in Fig. 5.

Aggregator (fatt):

To aggregate two input encodings P ∈ R∣P ∣×H and Q ∈

R∣Q∣×H , we use the standard multi-head attention mecha-
nism (Vaswani et al., 2017). Specifically, we use P as the
query, Q as the key and value. This results in an output
PQ ∈ R∣P ∣×H , where at every time step i ∈ [0, ∣P ∣), P i

Q

is the weighted sum of Q, the weight is the attention of P i

on Q. We refer readers to Vaswani et al. (2017) for detailed
information.

We apply a residual connection on top of the multi-head
attention mechanism in order to maintain the original infor-
mation contained in P . Specifically,

hPQ = Tanh(Linear([PQ;P])), (4)

where hPQ ∈ R∣P ∣×H , brackets [⋅; ⋅] denote vector con-
catenation.

We denote the above attention layer as

hPQ = Attention(P,Q). (5)

Using two of such layers (without sharing parameters), we
aggregate three inputs: hobs ∈ R∣obs∣×H , htask ∈ R∣task∣×H

and hs ∈ R∣note∣×H , where ∣obs∣, ∣task∣ and ∣note∣ denote
the number of tokens in a text observation, the number of
tokens in the instruction, and the number of nodes in the
notebook:

hobs,task = Attention(hobs, htask),
hx = Attention(hobs,task, hs).

(6)

Here, hobs,task ∈ R∣obs∣×H , hx ∈ R∣obs∣×H .

Action Generator (πfunc, πadj, πnoun):

In Q-TextWorld, all actions follow the same format of
<func, adj, noun>. Therefore, the query action space
Aq and the physical action space Aphy are shared (i.e., the
vocabularies are shared). We use a three-head module to
generate three vectors. Their sizes correspond to the func-
tion word, adjective, and noun vocabularies. The generated
vectors are used to compute an overall Q-value.

Taking the aggregated representation hx ∈ R∣obs∣×H as in-
put, we first compute its masked average, using the mask of
the text observation. This results in hs ∈ RH .

Specifically, the action generator consists of four multi-layer
perceptrons (MLPs):

hshared = ReLU(Linearshared(hs)),
Qfunc = Linearfunc(hshared),
Qadj = Linearadj(hshared),

Qnoun = Linearnoun(hshared).

(7)

Here, Qfunc ∈ R∣func∣, Qadj ∈ R∣adj∣, Qnoun ∈ R∣noun∣. ∣func∣,
∣adj∣, and ∣noun∣ denote the vocabulary size of function
words, adjectives, and nouns.

In order to alleviate the difficulties caused by a large action
space, similar to the pointer mechanism in the Q-BabyAI
agent, we apply masks over vocabularies when sampling
actions. In the masks, only tokens appearing in the current
notebook are labeled as 1, i.e., the text agent only performs
physical interaction with objects noted in its notebook. It
also only asks questions about objects it has heard of.

Finally, we compute the Q-value of an action <u, v, w>:

Q<u,v,w> = (Qu +Qv +Qw)/3, (8)

where u, v and w are tokens in the function word, adjective,
and noun vocabulary.

C. Implementation Details
In this section, we provide implementation and training
details of our agents. In Appendix C.1, we provide im-
plementation details for our agent used for the Q-BabyAI
environments. In Appendix C.1, we provide implementation
details for our agent used for the Q-TextWorld environments.

C.1. AFK— Q-BabyAI

We closely follow the training procedure of the publicly
available code of the BabyAI No Query agent (Chevalier-
Boisvert et al., 2019). We train our AFK and all base-
lines with PPO (Schulman et al., 2017). Specifically,
we use the Adam (Kingma & Ba, 2015) optimizer with
learning rate 0.0001. We update the model every 2560
environment steps. The batch size is 1280. The PPO
epoch is 4 and the discount factor is 0.99. We use 64
parallel processes for collecting data from the environ-
ment. The scaling factor β of the episodic exploration
bonus is set to 0.1 for all experiments. For all experi-
ments, we study uni-gram and bi-gram similarity mod-
els and report the better results. We tuned the episodic-
exploration scaling factor β ∈ {0.001, 0.01, 0.1, 0.5}, hid-
den size of the pointer network l ∈ {32, 64, 128, 256},

Asking for Knowledge (AFK)

learning rate ∈ {10−5, 10−4, 10−3}, and similarity function
∈ {uni-gram, bi-gram}. We train all agents with 5 different
random seeds: [24, 42, 123, 321, 3407].

C.2. AFK— Q-TextWorld

We adopt the training procedure from the official code base
released by TextWorld authors (Côté et al., 2018). Our
text agent is trained with Deep Q-Learning (Mnih et al.,
2013). We use a prioritized replay buffer with memory size
of 500, 000, and a priority fraction of 0.5. During model
update, we use a replay batch size of 64. We use a discount
factor γ = 0.9. We use noisy nets, with a σ0 of 0.5. We
update the target network after every 1000 episodes. We
sample the multi-step return n ∼ Uniform[1, 3]. We refer
readers to Hessel et al. (2018) for more information about
different components of DQN training.

For all experiments, we use Adam (Kingma & Ba, 2015)
as the optimizer. The learning rate is set to 0.00025 with a
clip gradient norm of 5. We train all agents with 5 different
random seeds: [24, 42, 123, 321, 3407]. For replay buffer
data collection, we use a batch size of 20. We train our
agents with 500K episodes, each episode has a maximum
number of steps 20. After every 2 data collection steps,
we randomly sample a batch from the replay buffer, and
perform a network update.

Resources: We use a mixture of Nvidia V100, P100 and
P40 GPUs to conduct all the experiments. On average,
experiments on Q-BabyAI take 1 day, experiments on Q-
TextWorld take 2 days.

D. Additional Results
Success rate and episode length: In Tab. 10 we report
success rate and episode length of No Query, Query Base-
line, and AFK on all levels of Q-BabyAI tasks. Note, due to
the early termination mechanism, the comparison of episode
length is only meaningful when the agent is able to solve
the task. For instance, in Object in Box (♣) and Danger
(♠), No Query and Query Baseline have shorter episode
length than AFK because they either step on the danger tile
or open the wrong box, resulting in the termination of an
episode.

Number of queries made by an AFK agent in seen and
unseen tasks: To better understand the agent’s behavior
in seen and unseen tasks, we report the number of queries
an agent made across 500 evaluation episodes. As shown
in Fig. 6 (left), when an agent is trained and evaluated on
the same tasks (♣♠), in most episodes, the agent makes
four queries, which is the optimal number of queries of the
task. In contrast, when the agent is trained and evaluate on
different tasks, Fig. 6 (right), it made more queries.

0 10 20 30
of Queries

0

200

400

Co
un

t

0 10 20 30
of Queries

0

50

100

150

Co
un

t

Figure 6. Evaluation episode count over number of queries. Left:
train on ♣♠, evaluate on ♣♠. Right: train on ♠♦+♦♣, evaluate
on ♣♠. ♣: Obj. in Box, ♠: Danger, ♦: Go to Favorite.

E. Training Curves
The training curves of all Q-BabyAI and Q-TextWorld ex-
periments in terms of success rate and episode length are
shown in Fig. 7, Fig. 8, Fig. 9, Fig. 10, and Fig. 11.

Asking for Knowledge (AFK)

No Query Query Baseline AFK (Ours)

Tasks Succ.(%) Eps. Len. Succ.(%) Eps. Len. Succ.(%) Eps. Len.

Lv. 1

♣ 50.5±0.6 5.9±0.1 49.8±1.1 6.0±0.1 100.0±0.0 10.8±0.1
♠ 68.3±0.8 8.2±0.0 73.8±0.9 8.3±0.1 100.0±0.0 10.4±0.0
♦ 98.9±0.4 30.2±1.5 99.3±0.2 26.7±1.5 100.0±0.0 16.8±6.7
♥ 99.7±0.2 26.2±0.9 85.3±1.1 36.8±1.0 100.0±0.0 20.6±0.2

Lv. 2

♣♠ 0.0±0.0 43.3±0.7 0.0±0.0 44.1±0.6 90.3±1.8 15.5±0.3
♣♦ 0.1±0.1 224.8±0.4 0.6±0.5 224.3±0.5 94.3±2.3 18.8±0.3
♣♥ 0.0±0.0 98.0±0.0 0.0±0.0 98.0±0.0 99.0±0.4 32.3±0.6
♠♦ 0.4±0.1 90.8±1.3 0.2±0.2 91.4±1.1 100.0±0.0 14.5±0.0
♠♥ 0.0±0.0 76.8±2.1 0.0±0.0 79.5±1.7 0.0±0.0 79.0±0.9
♦♥ 10.8±1.6 202.9±4.0 10.2±2.1 203.2±5.1 98.7±0.2 66.9±3.2

Lv. 3

♣♠♦ 0.0±0.0 91.8±1.1 0.0±0.0 92.2±0.6 0.15±0.2 85.8±1.4
♣♠♥ 0.0±0.0 93.9±3.4 0.0±0.0 102.5±3.5 0.0±0.0 109.4±2.3
♣♦♥ 0.0±0.0 225.0±0.0 0.0±0.0 225.0±0.0 2.1±0.8 220.9±1.1
♠♦♥ 4.3±1.0 99.3±2.9 4.4±0.8 97.7±3.0 4.8±0.9 105.0±2.0

Lv. 4 ♣♠♦♥ 0.0±0.0 96.6±8.1 0.0±0.0 150.5±7.5 0.0±0.1 177.2±9.2

Table 10. Evaluation success rate and episode length on Q-BabyAI. ♣: Object in Box, ♠: Danger, ♦: Go to Favorite, ♥: Open Door.

Asking for Knowledge (AFK)

0.0 0.5 1.0 1.5 2.0
Env. Steps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

A
vg

. S
uc

c.
 R

at
e

Object in Box (Lv. 1)

0.0 0.5 1.0 1.5 2.0
Env. Steps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

A
vg

. S
uc

c.
 R

at
e

Danger (Lv. 1)

0.0 0.5 1.0 1.5 2.0
Env. Steps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

A
vg

. S
uc

c.
 R

at
e

Go To Favorite (Lv. 1)

0.0 0.5 1.0 1.5 2.0
Env. Steps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

A
vg

. S
uc

c.
 R

at
e

Open Door (Lv. 1)

0.0 0.5 1.0 1.5 2.0
Env. Steps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

A
vg

. S
uc

c.
 R

at
e

Danger + Object in Box (Lv. 2)

0.0 0.5 1.0 1.5 2.0
Env. Steps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

A
vg

. S
uc

c.
 R

at
e

Go to Favorite + Object in Box (Lv. 2)

0.0 0.5 1.0 1.5 2.0
Env. Steps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

A
vg

. S
uc

c.
 R

at
e

Open Door + Object in Box (Lv. 2)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Env. Steps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

A
vg

. S
uc

c.
 R

at
e

Danger + Go to Favorite (Lv. 2)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Env. Steps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

A
vg

. S
uc

c.
 R

at
e

Danger + Open Door (Lv. 2)

0 1 2 3 4
Env. Steps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

A
vg

. S
uc

c.
 R

at
e

Open Door + Go to Favorite (Lv. 2)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Env. Steps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

A
vg

. S
uc

c.
 R

at
e

Obj in Box + Danger + Go to Favorite (Lv. 3)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Env. Steps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

A
vg

. S
uc

c.
 R

at
e

Danger + Go to Favorite + Open Door (Lv. 3)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Env. Steps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

A
vg

. S
uc

c.
 R

at
e

Obj in Box + Danger + Open Door (Lv. 3)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Env. Steps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

A
vg

. S
uc

c.
 R

at
e

Obj in Box + Danger + Open Door (Lv. 3)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Env. Steps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

A
vg

. S
uc

c.
 R

at
e

Boss (Lv. 4)

Figure 7. Success rate of AFK and baselines on Q-BabyAI.

Asking for Knowledge (AFK)

0.0 0.5 1.0 1.5 2.0
Env. Steps 1e7

20

40

60

A
vg

. E
pi

so
de

 L
en

gt
h

Object in Box (Lv. 1)

0.0 0.5 1.0 1.5 2.0
Env. Steps 1e7

10

20

30

40

A
vg

. E
pi

so
de

 L
en

gt
h

Danger (Lv. 1)

0.0 0.5 1.0 1.5 2.0
Env. Steps 1e7

50

100

150

200

A
vg

. E
pi

so
de

 L
en

gt
h

Go To Favorite (Lv. 1)

0.0 0.5 1.0 1.5 2.0
Env. Steps 1e7

20

40

60

80

100

A
vg

. E
pi

so
de

 L
en

gt
h

Open Door (Lv. 1)

0.0 0.5 1.0 1.5 2.0
Env. Steps 1e7

20

30

40

50

A
vg

. E
pi

so
de

 L
en

gt
h

Danger + Object in Box (Lv. 2)

0.0 0.5 1.0 1.5 2.0
Env. Steps 1e7

50

100

150

200

A
vg

. E
pi

so
de

 L
en

gt
h

Open Door + Object in Box (Lv. 2)

0.0 0.5 1.0 1.5 2.0
Env. Steps 1e7

40

60

80

100

A
vg

. E
pi

so
de

 L
en

gt
h

Open Door + Object in Box (Lv. 2)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Env. Steps 1e7

0

20

40

60

80

100

A
vg

. E
pi

so
de

 L
en

gt
h

Danger + Go to Favorite (Lv. 2)

0 1 2 3 4 5
Env. Steps 1e7

60

80

100

A
vg

. E
pi

so
de

 L
en

gt
h

Danger + Open Door (Lv. 2)

0.0 0.5 1.0 1.5 2.0
Env. Steps 1e7

50

100

150

200

A
vg

. E
pi

so
de

 L
en

gt
h

Open Door + Go to Favorite (Lv. 2)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Env. Steps 1e7

50

60

70

80

90

100

A
vg

. E
pi

so
de

 L
en

gt
h

Obj in Box + Danger + Go to Favorite (Lv. 3)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Env. Steps 1e7

60

80

100

120

140

A
vg

. E
pi

so
de

 L
en

gt
h

Danger + Go to Favorite + Open Door (Lv. 3)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Env. Steps 1e7

60

80

100

120

140

A
vg

. E
pi

so
de

 L
en

gt
h

Obj in Box + Danger + Open Door (Lv. 3)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Env. Steps 1e7

215

220

225

A
vg

. E
pi

so
de

 L
en

gt
h

Obj in Box + Danger + Open Door (Lv. 3)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Env. Steps 1e7

100

150

200

A
vg

. E
pi

so
de

 L
en

gt
h

Boss (Lv. 4)

Figure 8. Episode length of AFK and baselines on Q-BabyAI.

Asking for Knowledge (AFK)

0 1 2 3 4 5
Episodes 1e5

0.0

0.2

0.4

0.6

0.8

1.0

A
vg

. S
uc

c.
 R

at
e

Take 1

0 1 2 3 4 5
Episodes 1e5

0.0

0.2

0.4

0.6

0.8

1.0

A
vg

. S
uc

c.
 R

at
e

Take 2

0 1 2 3 4 5
Episodes 1e5

0.0

0.2

0.4

0.6

0.8

1.0

A
vg

. S
uc

c.
 R

at
e

Take 1 Cut

0 1 2 3 4 5
Episodes 1e5

0.0

0.2

0.4

0.6

0.8

1.0

A
vg

. S
uc

c.
 R

at
e

Take 2 Cut

Figure 9. Success rate of AFK and baselines on Q-TextWorld.

0 1 2 3 4 5
Episodes 1e5

0.0

0.2

0.4

0.6

0.8

1.0

A
vg

. R
ew

ar
d

Take 1

0 1 2 3 4 5
Episodes 1e5

0.0

0.2

0.4

0.6

0.8

A
vg

. R
ew

ar
d

Take 2

0 1 2 3 4 5
Episodes 1e5

0.0

0.2

0.4

0.6

0.8

A
vg

. R
ew

ar
d

Take 1 Cut

0 1 2 3 4 5
Episodes 1e5

0.0

0.2

0.4

0.6

0.8

A
vg

. R
ew

ar
d

Take 2 Cut

Figure 10. Training reward received by AFK and baselines on Q-TextWorld. Note, training reward is the sum of 1) reward given by the
environment for solving the task; and 2) the episodic exploration bonus.

Asking for Knowledge (AFK)

0 1 2 3 4 5
Episodes 1e5

5

10

15

20

A
vg

. E
pi

so
de

 L
en

gt
h

Take 1

0 1 2 3 4 5
Episodes 1e5

10

12

14

16

18

20

A
vg

. E
pi

so
de

 L
en

gt
h

Take 2

0 1 2 3 4 5
Episodes 1e5

10

15

20

A
vg

. E
pi

so
de

 L
en

gt
h

Take 1 Cut

0 1 2 3 4 5
Episodes 1e5

19.00

19.25

19.50

19.75

20.00

A
vg

. E
pi

so
de

 L
en

gt
h

Take 2 Cut

Figure 11. Steps used by AFK and baselines during training on Q-TextWorld.

