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the Cut Process
Iou-Jen Liu, Shao-Yun Fang, Member, IEEE, and Yao-Wen Chang, Fellow, IEEE

Abstract—Self-aligned double patterning (SADP) is one of the
most promising techniques for sub-20 nm technology. Spacer-is-
dielectric SADP using a cut process is getting popular because
of its higher design flexibility; for example, it can decompose
odd cycles without the need of inserting any stitch. This paper
presents the first work that applies the cut process for decom-
posing odd cycles during routing. For SADP, further, overlay
control is a critical issue for yield improvement; while pub-
lished routers can handle only partial overlay scenarios, this
paper identifies all the scenarios that induce overlays and pro-
poses a novel constraint graph to model all overlays. With the
developed techniques, our router can achieve high-quality rout-
ing results with significantly fewer overlays (and thus better
yields). Compared with three state-of-the-art studies, our algo-
rithm can achieve the best quality and efficiency, with zero cut
conflicts, smallest overlay length, highest routability, and fastest
running time.

Index Terms—Algorithms, design, manufacturability, perfor-
mance, routing, self-aligned double pattering (SADP) lithography.

I. INTRODUCTION

BEFORE next generation lithography technologies such as
electron beam lithography and extreme ultraviolet lithog-

raphy are ready, double patterning with 193 nm immersion
lithography is still the major technique for technology scaling,
in which self-aligned double patterning (SADP) is one of the
most promising candidates for sub-20 nm technology nodes.
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Fig. 1. (a) Target layout. SADP using the (b) cut process and (c) trim process.

Compared to litho-etch-litho-etch (LELE) double patterning,
SADP has better critical dimension control due to its intrinsic
self-aligned property [2].

In an SADP process, a layout is decomposed into two
masks, a core mask and a trim/cut mask. Different from LELE
double patterning, a feature in the SADP process may not
be directly defined by one of the two masks. There are two
types of SADP processes: 1) the SADP cut process using a cut
mask [3] and 2) the SADP trim process using a trim mask [2].
In both processes, every core pattern is surrounded by a spacer.
The difference between the cut process and the trim process
is the role of the second mask: in the cut process, the regions
not covered by a spacer and the cut mask form the final lay-
out. Fig. 1(b) shows the layout decomposition result of a given
layout shown in Fig. 1(a) by using the cut process. In contrast,
the regions not covered by the spacer but covered by the trim
mask produce the final layout in the trim process, as the lay-
out decomposition result shown in Fig. 1(c). We refer to the
patterns directly defined by the core mask as main core pat-
terns, the patterns defined by a spacer and a trim/cut mask as
second patterns, and the core patterns not existing in the final
layout as assistant core patterns. In addition, an overlay can be
produced in either process, which is defined as a section of a
feature boundary that is not surrounded by a spacer. For exam-
ple, in Fig. 1(b), a section of the right boundary of pattern A
induces an overlay. Also, in Fig. 1(c), the top and right sides
of pattern B are not surrounded by the spacer, and thus over-
lays occur. Since overlays can cause pattern distortion due to
the misalignment of two masks, overlay minimization is one
of the most critical issues for yield improvement in SADP [4].
Note that assist core patterns provide a protecting spacer for
second patterns and effectively reduce overlays. Consequently,
many existing layout decomposition algorithms use assist core
patterns for overlay minimization [5]–[9].
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Fig. 2. SADP using the cut process provides higher design flexibility.
(a) and (b) Odd cycle can be decomposed by merging patterns A and B,
and then applying a cut pattern to them. (c) and (d) Patterns placed in a
tip-to-tip manner can be assigned the same color.

The major advantage of SADP using the cut process over
SADP using the trim process is that the cut process has higher
design flexibility. In the trim process, a pattern is generated
either by a core pattern or by a trim pattern, and they should
be assigned to different masks if they are too close to be gen-
erated by the same mask. Since assigning each pattern to one
of the two masks is analogous to assigning each pattern one
of two colors, we define the mask spacing rule as the mini-
mum coloring distance. As illustrated in Fig. 2(a), the distance
between each pair of the patterns is shorter than the mini-
mum coloring distance, forming an odd cycle. Since an odd
cycle is not two-colorable, the layout is not decomposable with
the trim process [2], [10], [11]. Odd cycles, however, can be
decomposed in the SADP cut process. As shown in Fig. 2(b),
the odd cycle is decomposed by merging patterns A and B
and assigning the remaining two patterns to different masks
(different colors). Then, a cut pattern is used to separate pat-
terns A and B [3], [5], [12], [13]. In addition, two tip-to-tip
placed patterns can also be merged first and be separated
by using a cut pattern, increasing the design flexibility, as
illustrated in Fig. 2(c) and (d).

Since the SADP decomposability and the overlay con-
trollability of an arbitrary layout are quite restricted, an
SADP-aware detailed router is desirable. Some SADP-aware
detailed routing algorithms have been proposed for the trim
process [10], [11], [14], [15] and for the cut process [16].
Du et al. [10] proposed a graph model to capture the decompo-
sition violations, and Gao and Pan [11] performed routing and
layout decomposition simultaneously. However, both studies
do not consider assistant core patterns during routing, result-
ing in significant overlays. To the best of our knowledge, only
the existing work [16] targets on SADP using the cut process.
Nevertheless, the work [16] fails to apply the cut technique to
solve odd cycles, and the merger of core patterns and assis-
tant core patterns results in severe overlays. Consequently, this
paper is the first work that applies the cut technique for solving
odd cycles during the routing stage.

In this paper, we propose the first SADP-aware detailed
router using the merge technique in the cut process to decom-
pose odd cycles of layout patterns. We identify all the
scenarios that induce overlays and propose a novel constraint
graph to precisely capture all overlays in a routing result.
In addition, a color flipping algorithm is proposed to fur-
ther reduce overlays and preserve routing resource. The major
contributions of this paper are summarized as follows.

1) This paper proposes the first work that applies the merge
technique to decompose odd cycles of layout patterns
during the routing stage.

2) The identified overlay scenarios are complete, which is
the foundation for systematical overlay minimization.

3) A novel overlay constraint graph is proposed to capture
all overlays in a routing result, which provides precise
overlay information for our router.

4) We propose a linear-time color flipping algorithm
that gives a router more flexibility to utilize routing
resources. The proposed color flipping algorithm finds
the optimal color assignment of a given layout in lin-
ear time under the condition that no cycle exists in the
overlay constraint graph.

5) The routing results are guaranteed to be conflict-free and
thus are decomposable.

6) Compared with three state-of-the-art studies, our algo-
rithm can achieve the best quality and efficiency, with
zero cut conflicts, smallest overlay length, highest
routability, and fastest running time.

The rest of this paper is organized as follows. Section II
introduces side overlays, design rules for the SADP cut pro-
cess, and the problem formulation. In Section III, a detailed
routing algorithm guided by the proposed overlay constraint
graph is presented. Section IV reports our experimental results.
Finally, we conclude this paper in Section V.

II. PRELIMINARIES

This section gives some preliminaries of the addressed prob-
lem: the importance of overlay control for SADP, process rules
adopted by this paper, and the definition of hard overlay and
the problem formulation.

A. Side Overlay

The major advantage of the SADP processes over the LELE
double patterning process is the better overlay control achieved
by spacer protection [8]. Pattern distortions due to overlays,
however, still occur because of the shift of the second mask,
which results in the misalignment between core patterns and
trim/cut patterns. We denote the shift amount of the second
mask as wo. In addition, feature boundaries not protected by
a spacer and directly defined by the cut mask may cause
more severe pattern distortions. As illustrated in Fig. 3, two
patterns are, respectively, fabricated by the LELE double pat-
terning process [see Fig. 3(a)] and by the SADP cut process
[see Fig. 3(b)]. In both cases, patterns A and B are assigned
different colors, and the second/cut mask shifts wo toward left.
In Fig. 3(a), the shift of the second mask results in a shorter
distance between patterns A and B. In Fig. 3(b), however, the
shift of the cut shrinks the width of pattern B by wo, which
may result in electrical violations or yield loss. Therefore, to
utilize the intrinsic self-aligned property of the SADP process,
overlays have to be controlled very carefully.

We define a side overlay as a section of a side boundary
of a feature not protected by a spacer and a tip overlay as
a feature tip not protected by a spacer. As shown in Fig. 4,
the side boundaries of pattern A not protected by a spacer
induces a side overlay, and a tip of pattern B has a tip overlay.
Tip overlays are considered as noncritical overlays because tip
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Fig. 3. Misalignment of two masks causes different effects in LELE dou-
ble patterning and in SADP. (a) Two patterns get closer in LELE double
patterning. (b) Second pattern is seriously distorted in SADP.

Fig. 4. Side boundary of a feature not protected by a spacer results in a side
overlay.

overlays induce little critical dimension change [3], [7], but
side overlays should be minimized to reduce yield loss.

B. Design Rules and Cut-Mask Conflict

In semiconductor manufacturing, design rules are set to
ensure good manufacturability. The design rules considered
in this paper (and previous papers) are listed below.

1) wline: The minimum width of a metal line.
2) wspacer: The width of a spacer, which is equal to the

minimum spacing between two metal lines in a grid-
based design.

3) wcut: The minimum width of a cut pattern.
4) wcore: The minimum width of a core pattern.
5) dcut: The minimum distance between two cut patterns.
6) dcore: The minimum distance between two core patterns.
7) doverlap: The length that a cut pattern overlaps with a

spacer.
In practice, we set the constraint as follows [7]:

wline = wspacer (1)

wcut = wcore < dcut = dcore (2)

dcore < wline + 2wspacer − 2doverlap. (3)

Core patterns with distance within dcore can be merged
by applying the merging technique [12], as shown in
Fig. 4, where pattern A is merged with the assistant core
pattern. Ma et al. [12] pointed out that, for SADP, mask
rule check (MRC) challenges mostly come from the cut
mask [13], [17], and MRC violations occur over a spacer can
be ignored because they do not affect the final layout [12]. As
shown in Fig. 5(a), the distance between cut patterns is smaller
than dcut. Therefore, the printed cut patterns may contain irreg-
ular redundant patterns [Fig. 5(b)]. The irregular redundant
cut patterns, however, would not affect the final target pat-
tern, because they occur on spacers instead of target patterns.
As illustrated in Fig. 5(b), patterns A and B remain intact

Fig. 5. (a) Distance between cut patterns is smaller than dcut.
(b) Patterns A and B remain intact while MRC violations occur on spacers.

while MRC violations occur on spacers. Therefore, we define
a cut conflict as a cut pattern violating the minimum width rule
(wcut) or a pair of cut patterns violating the minimum distance
rule (dcut) over a target pattern. To produce a decomposable
routing result, cut conflicts should strictly be forbidden.

C. Problem Formulation

Ma et al. [3], [12] pointed out that tip-to-side over-
lays (i.e., side overlay whose length is wline) are consid-
ered SADP-friendly. By allowing tip-to-side overlays, many
complex patterns, such as odd cycles, can be decomposed.
Therefore, we define a side overlay whose length is longer than
wline as a hard overlay; otherwise, it is a nonhard overlay. To
simultaneously consider design flexibility and manufacturabil-
ity, we allow nonhard overlays and strictly forbid hard overlays
in our routing algorithm. Our overlay-aware detailed routing
problem is then formulated as follows.

Problem 1: Given a netlist, a set of blockages, a grid-based
routing plane, and a set of design rules, simultaneously per-
form detailed routing and layout decomposition to minimize
the number of nonhard overlays such that no cut conflict, hard
overlay, and design rule violation occur.

III. OVERLAY-CONSTRAINT GRAPH GUIDED

SADP-AWARE DETAILED ROUTING

In this section, the identified potential overlay scenarios, the
overlay constraint graph, the linear-time color flipping algo-
rithm, the cut conflict removal methods, and the overall routing
scheme are presented in the following sections.

A. Potential Overlay Scenarios

To control overlays efficiently and systematically, the first
step is to have the information of which geometry relation-
ships and color assignments of patterns induce overlays. There
are three sources of overlays: 1) the merging of two core
patterns; 2) the merging of a core pattern and an assistant
core pattern; and 3) a second pattern not protected by a
spacer. In the above three cases, some feature boundaries
must be defined by cut patterns, which results in overlays.
We first define two neighboring patterns to be independent if
and only if the two patterns would not induce any overlay
regardless of their color assignments. We have the following
theorem.
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Fig. 6. D = wline + 2wspacer. (a) Two patterns with distance
√

2 · (wline +
2 · wspacer). Patterns A and B can be assigned to (b) core patterns simulta-
neously, because

√
2 · (wline + 2 · wspacer) > dcore and (c) second patterns

simultaneously, because there are enough space for the necessary assistant
core patterns. (d) Pattern A is second pattern and pattern B is core pattern.
The distance between pattern B (core) and the assistant core pattern for pat-

tern A is
√

(wline + 2wspacer)2 + w2
spacer, which must not be less than dcore.

Hence, no overlay is induced.

Theorem 1: Two neighboring patterns are independent if
and only if the distance between the two patterns is larger than
or equal to dindep, where dindep = √

2 · (wline + 2 · wspacer).
Proof: Suppose there are two patterns with distance

√
2 ·

(wline +2 ·wspacer) [Fig. 6(a)]. Obviously, the two patterns can
be simultaneously assigned to the core mask, because

√
2 ·

(wline + 2 · wspacer) > dcore [Fig. 6(b)]. If the two patterns
are both second patterns, there is enough space between the
two patterns to form the necessary assist core patterns without
applying the merging technique with core patterns. Therefore,
no overlay is induced [Fig. 6(c)]. In addition, if one pattern is
a core pattern and the other is a second pattern, the distance
between the core pattern and the assistant core pattern for the
second pattern is no less than

√
(wline + 2wspacer)2 + w2

spacer,

which must not be less than dcore. Hence, the core pattern
and the assist core pattern can simultaneously exist without
merging, and thus no overlay is induced [Fig. 6(d)]. Moreover,
for a pair of parallel patterns, if the distance between them is
larger than dindep, the distance between them is at least twice
the width of a routing track. Obviously, the distance between
them would allow any color combination without inducing any
side overlay.

Then, we define potential overlay scenarios to be the geom-
etry relationships of a pair of neighboring patterns that induce
overlays when the patterns are assigned specific color com-
binations. Obviously, patterns in potential overlay scenarios
are dependent. An example of a potential overlay scenario is
shown in Fig. 7(a) and (b). If both patterns A and B are core
patterns, side overlays are induced on the bottom side of pat-
tern A and on the top side of pattern B due to the cut pattern.
In contrast, no overlay will be induced between the two pat-
terns if pattern A is a core pattern and pattern B is a second
pattern.

Fig. 7. Assigning patterns A and B (a) and (b) different colors would not
induce any overlay, (c) and (d) same color would induce one side overlay,
and (e) and (f) different colors would not induce any side overlay.

Fig. 8. (a) and (b) have the same optimal color assignments even though
their geometry scenarios are different.

To identify all potential overlay scenarios, we first examine
the geometry relationship of a pair of dependent rectangles in
a grid-based design, which can be characterized by using the
following terms.

1) Xmin(A, B): The minimum track difference in the
x-direction of two rectangles A and B.

2) Ymin(A, B): The minimum track difference in the
y-direction of two rectangles A and B.

3) Dir(A, B): The directions of two rectangles A and B.
⊥ means A and B are orthogonal, and ‖ means A and B
are parallel.

Then, the geometry relationship of a pair of depen-
dent rectangles can be described by the three tuple
(Xmin(A, B), Ymin(A, B), Dir(A, B)). For example, the geome-
try relationship of rectangles A and B in Fig. 8(a) is denoted as
(0, 1, ‖). Note that the geometry relationship of the two rect-
angles in Fig. 8(b) is the same as that in Fig. 8(a) despite the
different geometry scenarios. Because the minimum boundary
distance and the directions of the two rectangles are the same
in Fig. 8(a) and (b), the optimal color assignments are also
the same. Thus, we classify the two geometry scenarios into
the same category of geometry relationship.

Since the number of dependent rectangles of a target rectan-
gle is limited (implied by Theorem 1), all the potential overlay
scenarios of a pair of dependent rectangles can be enumerated
according to all types of geometry relationships, as shown in
Fig. 9. Then, we have the following theorem.

Theorem 2: The identified potential overlay scenarios are
complete for two dependent rectangle patterns.

Proof: By Theorem 1, proving Theorem 2 is equiva-
lent to proving the identified potential overlay scenarios
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Fig. 9. Identified potential overlay scenarios.

TABLE I
NOTATION OF COLOR ASSIGNMENT

include all the geometry relationships of a pair of depen-
dent rectangle patterns. The geometry relationships of two
rectangles, rectangles A and B, can be divided into two
categories.

1) Xmin(A, B) = 0 or Ymin(A, B) = 0: In this
case, the distance between A and B is larger than
dindep if Ymin(A, B) ≥ 3 or Xmin(A, B) ≥ 3.
Therefore, there are totally eight geometry relation-
ships of a pair of dependent rectangles: (0, 1, Dir(A, B)),
(0, 2, Dir(A, B)), (1, 0, Dir(A, B)), and (2, 0, Dir(A, B)),
where Dir(A, B) is either ⊥ or ‖.

2) Xmin(A, B) > 0 and Ymin(A, B) > 0: Under this cir-
cumstance, the distance between A and B is larger than
dindep if Ymin(A, B) ≥ 2 and Xmin(A, B) ≥ 2. Thus, there
are totally six geometry relationships of a pair of depen-
dent rectangles: (1, 1, Dir(A, B)), (1, 2, Dir(A, B)), and
(2, 1, Dir(A, B)), where Dir(A, B) is either ⊥ or ‖.

Note that (x, y,⊥) is equivalent to (y, x,⊥). For example,
(1, 2,⊥) is equivalent to (2, 1,⊥). After excluding the equiva-
lent scenarios, there are six dependent geometry relationships
in 1), which are corresponding to types 1 and 2 in Fig. 9,
and five dependent geometry relationships in 2), which are
corresponding to type 3 in Fig. 9.

According to Theorem 2, there are 11 potential overlay sce-
narios for two rectangle patterns, and every potential overlay
scenario has at most 22 color assignment. We enumerate all
the color assignments for every potential overlay scenario, as
shown in Figs. 23–34. Table II summarizes the enumeration.
“color rule” is the color assignments that minimize side over-
lays in every potential overlay scenario, and the notation of

TABLE II
COLOR RULES AND THE NUMBER OF INDUCED SIDE OVERLAYS OF

THE IDENTIFIED POTENTIAL OVERLAY SCENARIOS

color assignments is shown in Table I; “min SO” represents
the total length of side overlays the scenario induces if the
optimal color rule is followed; “max SO” represents the max-
imum total length of side overlays the scenario induces if the
proposed color rule is not followed. Because types 2-c, 2-d,
and 3-e do not induce any side overlays, the three scenarios are
not considered. Below we use two examples to explain why
the patterns in Fig. 9 are potential overlay scenarios. Type 2-b
in Fig. 9 is a potential overlay scenario because if pattern A is
a second pattern and pattern B is a core pattern, the assistant
core patterns for pattern A must be merged with pattern B,
which results in side overlays of total length equal to 2 on
pattern B, as shown in Fig. 7(c). An alternative assignment
is to assign both patterns A and B to the core mask, which
results in a unit of side overlay on pattern B, as shown in
Fig. 7(d). To minimize the total length of side overlays, the
latter assignment is preferred. In addition, type 3-a in Fig. 9 is
a potential overlay scenario because if both patterns A and B
are core pattern, it induces a unit of side overlay on pattern A,
as shown in Fig. 7(e). On the other hand, if patterns A and B
are assigned different colors, no side overlay will be induced
between them, as shown in Fig. 7(f).

The above analysis is for two rectangle patterns. For a pair
of polygonal features, we have the following theorem.

Theorem 3: The identified potential overlay scenarios are
complete and can be applied to any pair of dependent recti-
linear polygons.

Proof: Every rectilinear polygon is first fragmented into
rectangle patterns. After that, if two dependent rectangles
belong to the same rectilinear polygon, no overlay will be
induced between the pair of rectangles since they are made
of the same core pattern or the same second pattern. In con-
trast, if two dependent rectangles belong to different rectilinear
polygons, the identified potential overlay scenarios are com-
plete for the two rectangles by Theorem 2. Therefore, we
can conclude that the identified potential overlay scenarios
are complete and can be applied to any pair of dependent
rectilinear polygons.

Fig. 10(a) shows an example, where features A and B
are fragmented into A1, A2, B1, and B2. In dashed box 1,
A2 and B1 conform to the type 1-a potential overlay scenario.
In box 2, B1 and C conform to the type 2-b potential overlay
scenario. In box 3, C and B2 conform to the type 1-b potential
overlay scenario. Therefore, features A, B, and C induce three
potential overlay scenarios and should be colored according
to the color rules to minimize side overlays. Note that the
type 1-a and 1-b color rules are hard constraints, because the
violations of the type 1-a and 1-b color rules result in hard
overlays, which are strictly forbidden.
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Fig. 10. (a) Features A and B are fragmented into rectangles, and three
potential overlay scenarios are identified. (b) Overlay constraint graph of (a).
(c) Optimally colored overlay constraint graph.

Fig. 11. A and B have to be in (a) different colors (hard constraint)
and (b) same color (hard constraint). A and B should be in (c) differ-
ent colors (nonhard constraint) and (d) same color (nonhard constraint).
(e) Both A and B should be the second pattern (nonhard constraint).
(f) Only the color assignment CS is not allowed (nonhard constraint). (g) Hard
overlay odd cycle.

B. Overlay Constraint Graph

To handle all the overlay scenarios during the routing stage,
we propose a novel overlay constraint graph G(V, E) that cap-
tures all the scenarios of overlays. In the constraint graph,
every vertex represents a routed net and every edge represents
a color rule for a specific potential overlay scenario. There
are six different edges, as shown in Fig. 11(a)–(f). The bold
lines represent hard constraints and the dashed lines represent
nonhard constraints. The straight lines in Fig. 11(a) and (c)
represent that two vertices should be assigned different col-
ors. The lines with dummy vertices (the red vertices) in
Fig. 11(b) and (d) indicate that vertices A and B should be
assigned the same colors. The line with double arrows in
Fig. 11(e) represents type 3-b, where both two vertices should
be the second pattern. The line with one arrow in Fig. 11(f)
represents type 3-c, where only the color assignment CS is not
allowed.

Two vertices connected by an edge means that the two ver-
tices form a potential overlay scenario. It is possible that two
vertices are connected by two or more edges, which repre-
sents that the two patterns induce more than one potential
overlay scenario. For example, Fig. 10(b) shows the overlay
constraint graph of Fig. 10(a), where a type 1-b edge and a
type 2-b edge are between vertices B and C, and a type 1-a
edge is between vertices B and A. According to the over-
lay constraint graph, vertices A and B should be assigned
different colors, and vertices B and C should be assigned

Fig. 12. Even cycle reduction. Since C/A and B/D must be assigned the
same color, C/A and B/D are merged into a super node.

Fig. 13. (a) and (b) With nets A and B routed and color assigned, net C
cannot route with the shortest path. (c) and (d) By flipping the color of net
B to a second pattern, net C can route with the shortest path.

the same colors. Fig. 10(c) shows an optimal coloring result.
Note that in Fig. 10(b), the nonhard dashed edge between ver-
tices B and C is redundant because there exists a hard bold
edge between the two vertices. Therefore, the nonhard edge is
removed, as shown in Fig. 10(c).

In an overlay constraint graph, dummy vertices are used to
identify odd cycles composed of hard constraint edges, which
causes hard constraint violations. To produce routing results
without any hard constraint violation, odd cycles composed
of hard constraint edges are strictly forbidden. In Fig. 11(g),
vertices A, B, C, and D and a dummy vertex form an odd cycle
composed of five hard constraint edges, and thus there is no
legal color assignment without hard constraint violations. We
extend the constant-time odd cycle detection method for LELE
double patterning conflict cycle detection from [18] on our
overlay constraint graph to efficiently detect hard constraint
violations.

In addition, because the coloring of even cycles composed
of the same-type hard constraint edges are trivial, we reduce
the even cycles into two super vertices for further graph reduc-
tion. For example, the vertices that will be in the same color
in the even cycle shown in Fig. 12 are merged into a super
vertex. The overlay constraint graph keeps updating during the
sequential routing process, which gives our router precise and
complete overlay information.

C. Linear-Time Color Flipping Algorithm

In this section, we propose a linear-time color flipping algo-
rithm that finds the optimal color assignment on a given
overlay constraint graph under the condition that no cycle
exists in the overlay constraint graph.
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In most previous studies on SADP-aware detailed rout-
ing [10], [11], [16], colors of nets are determined when nets
are routed. However, fixing the colors of routed nets reduces
the flexibility of routing, which may increase the wirelength,
the total length of side overlays, and the number of conflicts. In
Fig. 13(a), for example, nets A and B are routed and assigned
to be a second pattern and a core pattern, respectively. With
fixed colors of nets A and B, net C cannot route with the short-
est path because it causes conflicts with either nets A or B,
as shown in Fig. 13(b). To complete the routing, net C has to
detour, which increases the wirelength and may induce more
overlays and conflicts. In the worst case, net C would fail to
find a conflict-free route. However, net C can be routed in the
shortest path without inducing any conflict and overlay by flip-
ping the color of net B, as shown in Fig. 13(c) and (d). Thus,
color flipping provides the router more flexibility and results in
better solution quality. However, locally flipping the color of a
net may cause more overlays and conflicts in a component of
an overlay constraint graph. Thus, the main challenge of color
flipping is to optimize overlay globally. To achieve the goal,
we first extract a tree from every component of an overlay
constraint graph, and then we propose a linear-time dynamic
programming-based algorithm to find an optimal solution of
color flipping on the tree.

We first extract a tree from an overlay constraint graph by
applying a maximum spanning tree algorithm. In the overlay
constraint graph, the cost of a nonhard constraint edge is set
to be the total length of side overlays the potential overlay
scenarios may induce, and the cost of a hard constraint edge
is set to be a constant larger than any cost of nonhard con-
straint edges. Thus, a tree with most “significant” edges will
be selected by running the maximum spanning tree algorithm.
Fig. 14 gives an example. Fig. 14(b) shows the overlay con-
straint graph of the layout shown in Fig. 14(a). In Fig. 14(b),
vertices B, C, and E form a cycle. By running the maximum
spanning tree algorithm, the edge between vertices B and E is
removed.

Having an overlay constraint tree G(V, E), a correspond-
ing flipping graph G′(V ′, E′) is constructed. In G′(V ′, E′),
every vertex vi ∈ V is split into two vertices, vC

i and vS
i ,

where vC
i represents that net i is assigned to be a core pat-

tern, and vS
i represents that net i is assigned to be a second

pattern. In addition, every edge (vi, vj) ∈ E, where vi is the
parent vertex of vj, has four corresponding directed edges
(vC

j , vS
i ), (v

C
j , vC

i ), (vS
j , vS

i ), (v
S
j , vC

i ) ∈ E′, which represent four
color assignment combinations of vi and vj. The cost of each
directed edge is set to be the total length of side overlays
induced by the color assignment. Fig. 14(c) illustrates the
flipping graph of the extracted overlay constraint tree from
Fig. 14(b), where the edge between vertices B and E is
ignored.

After the flipping graph construction, finding the optimal
color assignments of an overlay constraint tree G(V, E) is
equivalent to finding a minimum cost tree T∗(VT , ET) on the
flipping graph G′(V ′, E′). We find T∗ such that for each ver-
tex vi ∈ V , either vC

i ∈ VT or vS
i ∈ VT , and the total edge

cost of T∗ is minimized. To find such a minimum cost tree,
a dynamic programming-based algorithm is applied from the

Fig. 14. (a) Example layout of five routed nets. (b) Overlay constraint graph
that represents the layout in (a). (c) Flipping graph of the overlay constraint
tree of (b), where the edge between C and E is ignored. (d) Color assignment
after applying the color flipping algorithm. (e) Layout decomposition result
of (a).

leave vertices to the root vertices on G′. The optimal sub-
structure of the dynamic programming-based algorithm is as
follows:

Costv
(
vq

i

) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑
vj∈children(vi)

min
p∈{C,S}

{
Costv

(
v p

j

)

+ Coste
(

v p
j , vq

i

)}

if vq
i is not a leaf vertex

0, otherwise
(4)

where p, q ∈ {C, S}, and children(vi) is the set of children
vertices of vi. Fig. 14(c) shows the calculated costs on each
vertex. The optimal color assignment solution can be found by
backtracing the flipping graph from the root vertex with the
least cost. The color assignment result of Fig. 14(b) is shown
in Fig. 14(d), whose layout decomposition result is shown in
Fig. 14(e). Note that there is only a unit of side overlay on the
left side of pattern E, which is inevitable. In addition, the odd
cycle formed by patterns B, C, and E is solved by applying the
merging and cut technique. The proposed dynamic program-
ming can find an optimal solution, no matter which vertex in
the overlay constraint graph is chosen as the root.

Theorem 4: The proposed color flipping algorithm finds the
optimal color assignments of an overlay constraint tree in
linear time.
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Fig. 15. (a) Example of type A cut conflicts. (b) Given layout with three
target patterns. (c) Example of type B cut conflicts. (d) Cut conflict is removed
during the overlay minimization process.

Proof: First, we prove that the cost of a vertex vq
i computed

by (4) is the cost of a subtree rooted at vq
i , q ∈ {C, S}. If vq

i is a
leaf vertex in the flipping graph G′, the cost of a subtree rooted
at vq

i is zero because no edge is in the subtree. Suppose vq
i is

not a leaf vertex in G′, v1, v2, . . . , vn ∈ children(vi), and the
costs of v p

1 , v p
2 , . . . , v p

n are the respective costs of 2n subtrees
rooted at v p

1 , v p
2 , . . . , v p

n , p ∈ {C, S}. According to (4), the cost
of vq

i is the sum of n subtree costs and n edge costs. Because
the n edges are connecting edges between the n subtrees
and vq

i , the cost of vq
i is the cost of a subtree rooted at vq

i .
Then, we prove that a tree rooted at vq

i and found by
using (4) has the minimum cost. If vq

i is a leaf on G′,
Costv(v

q
i ) is zero, which is minimized. Suppose vq

i is not a
leaf vertex on G′, v1, v2, . . . , vn ∈ children(vi), and Costv(v

p
1 ),

Costv(v
p
2 ), . . . , Costv(v

p
n ) are minimized. Assume Costv(v

q
i )

computed according to (4) is not minimum, there is at
least one vj ∈ children(vi) such that minp∈{C,S}{Costv(v

p
j ) +

Coste(v
p
j , vq

i )} is not minimum. Because Coste(v
p
j , vq

i ) is fixed

for any p ∈ {C, S}, either Costv(vC
j ) or Costv(vS

j ) is not mini-
mum, which causes a contradiction. Thus, a tree rooted at vq

i
and found by using (4) has the minimum cost.

The complexity of the algorithm is dominated by the cost
computing process. By (4), the minimum cost of every vertex
v ∈ V ′ can be found by checking all children of v. By applying
the dynamic programming-based algorithm from leafs to the
root, every vertex and edge is checked only once, and thus the
time complexity is O(E + V).

D. Cut Conflict Removal

In this section, we present our cut conflict removal methods.
There are two types of cut conflicts: 1) a cut pattern violating
the minimum width rule (wcut) and 2) a pair of cut patterns
violating the minimum distance rule (dcut) over a target pat-
tern. Because the width of all cut patterns in our algorithms
are set to be larger than or equal to wcut, no minimum width
cut conflict would occur.

For minimum distance cut conflicts, we categorize them into
the following two scenarios.

1) Type A Conflicts: Cut conflicts induced by a pair of
patterns.

Fig. 16. (a) Given layout. (b) and (c) Cut conflict occurs over pattern B
no matter what colors are assigned. (d) Net C is ripped up and rerouted to
remove the cut conflict.

2) Type B Conflicts: Cut conflicts induced by more than
two patterns.

A pair of patterns that induce type A conflicts would fall into
one of the identified potential overlay scenarios. Therefore, we
can forbid type A conflicts by forbidding the color combina-
tions that would induce cut conflicts directly on the overlay
constraint graphs. As shown in Fig. 15(a), patterns A and B
form a type 1-b potential overlay scenario. From the enumer-
ated color assignments of potential overlay scenarios (Fig. 27),
we can find that if patterns A and B are assigned to core pat-
tern and second pattern, respectively (CS), one cut conflict
would occur. Therefore, the color assignment CS should be
forbidden. Hence, cut conflicts would not occur.

Type B conflicts are more complicated than type A con-
flicts. Therefore, we do not handle them directly on overlay
constraint graphs. Type B conflicts occur in the scenarios
where two parallel boundary sections of a target pattern are
defined directly by two cut patterns. Hence, by minimiz-
ing the number of target pattern boundaries that are defined
directly by cut patterns (i.e., side overlays), type B conflicts
can be controlled effectively without any additional computa-
tional efforts. As shown in Fig. 15(b) and (c), if all the three
patterns are assigned to core patterns, a type B cut conflict
would occur over pattern B. During our overlay minimization
process, pattern C would be reassigned to second pattern to
reduce overlays. As a result, because one of the cut patterns
is removed during the overlay minimization process, the cut
conflict is solved [Fig. 15(d)].

In addition, to further remove type B conflicts, a cut conflict
check scheme would be performed after each net is routed.
With potential overlay scenario identification, we can easily
locate the cut patterns caused by routed nets. We refer to cut
patterns that directly define edges of target patterns as critical
cut patterns. Note that only critical cut patterns may induce cut
conflicts. After a net is routed, therefore, only the critical cut
patterns generated by the newly routed net have to be checked.
If a newly routed net would induce cut conflicts with original
nets whatever color it is assigned to, the new net would be
ripped up and rerouted to avoid cut conflicts. As shown in
Fig. 16(b) and (c), a cut conflict would occur over pattern B
no matter what colors are assigned. To solve the cut conflict,
net C is ripped up and rerouted. As a result, the cut conflict
is removed at the expense of longer wirelength [Fig. 16(d)].
(In the experiments, the maximum iterations of rip-up and
reroute of a net is set to three.)
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Fig. 17. (a) Net A is assigned to second pattern and core pattern in lay-
ers 1 and 2, respectively. (b) Layer 2 overlay constraint graph. (c) Layer 1
overlay constraint graph.

E. Overall Routing Scheme

In this section, we present the overall flow of our overlay-
aware detailed routing algorithm. Our router is based on the
A*-search algorithm and is guided by the proposed constraint
graph. When performing A*-search for a net n, and a path
from a grid i to an adjacent gird j is considered, the routing
cost of grid j, which is denoted as Cgrid( j), can be computed
as follows:

Cgrid( j) = Cgrid(i) + α · Cwl(i, j) + β · Cvia(i, j) + γ · T2b( j)

where Cwl(i, j) and Cvia(i, j) are the extra wirelength and the
number of vias caused by the routing path from grid i to grid j,
respectively, and T2b( j) is set to be one if grid j induces a type
2-b potential overlay scenario with other routed nets. Note that
according to Table II, all potential overlay scenarios except
type 2-b do not induce overlay if colored properly. A type
2-b potential overlay scenario induces at least a unit of side
overlay regardless of color assignment. Hence, a routing path
that induces a type 2-b potential overlay scenario should be
discouraged. α, β, and γ are user-defined parameters to adjust
weights among wirelength, the via cost, and the type 2-b cost,
respectively.

In multilayer layout decomposition, a net can be assigned
to different colors in different routing layers. Therefore, in
our routing scheme, each routing layer has its corresponding
overlay constraint graph. Overlay constraint graphs that cor-
respond to different routing layers are independent. Fig. 17(a)
shows an example, where the segment of net A in layer one
is assigned to second pattern, and the segment of net A in
layer two is assigned to core pattern. Because two routing lay-
ers are used, we maintain two independent overlay constraint
graphs that correspond to the two routing layers, as shown in
Fig. 17(b) and (c).

The overall routing flow is shown in Fig. 18 and summarized
in Fig. 19. After routing a net, the overlay constraint graphs are
updated accordingly (lines 4 and 5). Next, the updated overlay
constraint graphs are checked whether odd cycles composed
of hard constraint edges exist. In addition, the cut conflict
check scheme is performed. If there are such odd cycles or
cut conflicts, the grids that cause the odd cycles and cut con-
flicts would be set to a high cost for the net, and the net is
ripped up and rerouted (lines 6–9). Then, the color of the net
would be pseudo-colored with least hard overlay violations

Fig. 18. Flow chart of the overlay-aware detailed routing algorithm.

Fig. 19. Overlay-aware detailed routing algorithm.

and induced overlay, which is executed in line 11. Color flip-
ping would be performed if the total length of side overlays
induced by the newly routed net is longer than a user-defined
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TABLE III
EXPERIMENTAL RESULTS ON SINGLE PIN CANDIDATE LOCATION BENCHMARKS

TABLE IV
EXPERIMENTAL RESULTS ON MULTIPLE PIN CANDIDATE LOCATIONS BENCHMARKS

threshold fthreshold (lines 12–14). After all nets are routed, the
color flipping would be performed on the full layout to further
perform overlay minimization (line 16). The time complexity
analysis of the overlay-aware detailed routing algorithm is as
follows: if there are m grids in the routing map M, and n nets
in the netlist N, the time to perform overlay-aware A∗-search in
line 4 is O(m log m). Updating the overlay constraint graph and
checking the overlay odd cycle in lines 5 and 6 take O(n) time.
Cut conflict check in line 6 is actually performed during the
backtrace step of overlay-aware A∗-search. Pseudo-coloring in
line 11 takes O(1) time and, by Theorem 4, color-flipping
in line 13 takes O(n) time. Therefore, inside the for loop,
lines 4–13 take O(n + m log m) time, and the for loop of
lines 2–15 would be performed by O(n) times. These take
a total of O(n(n + m log m)) time. Moreover, since n = O(m),
the total running time of the proposed overlay-aware detailed
routing algorithm is O(nm log m).

IV. EXPERIMENTAL RESULTS

Our algorithm was implemented in the C++ programming
language on a 2.93 GHz Linux work station with 48 GB
memory. We compared our results with [10], [11], and [16].
Because the binary codes of [10] and [16] are currently
unavailable, we implemented [10] and [16] for comparative
studies. The work [10] adopts multiple pin candidate loca-
tions, where the source pin and the target pin of every two-pin
net have multiple candidate locations, while the works [11],
[16] do not allow multiple pin candidate locations. As a result,
we had two sets of benchmarks: 1) benchmarks in which the
source and target pins of every two-pin net have multiple can-
didate locations and 2) benchmarks in which the locations
of the source and target pins of each two-pin net are fixed.
Every benchmark has three routing layers. Our algorithm can
apply to both sets of benchmarks. The user-defined parameters
in (5) are set as follows: α = β = 1, γ = 1.5, and the flipping
threshold fthreshold = 10. The benchmarks are scaled down to
10 nm node, where the design rules of SADP using the cut

Fig. 20. Running time for the overlay-aware detailed routing.

Fig. 21. Partial routing result of the proposed routing algorithm. The odd
cycle is decomposable by applying the merge and cut technique.

process are set as follows: wline = wspacer = wcut = wcore =
20 nm, and dcut = dcore = 30 nm.

The experimental results are listed in Tables III and IV,
where “Rout.” gives the routability, “overlay length” reports
the total length of side overlays, “#C” reports the number of
cut/trim conflicts, and “CPU” gives the running time in sec-
ond. Note that “conflict” represents the cut conflict for the cut
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Fig. 22. Partial routing result of [16]. The merging of the core patterns and
the assistant core patterns induces severe side overlays.

Fig. 23. Colors that represent different patterns.

Fig. 24. (a) Type 1-a potential overlay scenario. Color assignments
(b) and (c) CC and SS induce side overlays longer than wline, which are
strictly forbidden and (d) CS and SC do not induce side overlay.

Fig. 25. (a) Type 1-b potential overlay scenario. Color assignments
(b) and (c) CC and SS do not induce side overlay and (d) CS and SC induce
side overlays longer than wline, which are strictly forbidden.

process, and the trim conflicts for the trim process, which are
induced by parallel line ends [2], [10].

We first conducted an experiment on the first set of bench-
marks. Compared with [11] and [16], our algorithm efficiently
reduces the total length of side overlays by more than 90%,
with zero cut conflicts (implying decomposable layouts).
Compared with [10] on the second set of benchmarks, our
algorithm reduces the total length of side overlays by more
than 90% with a 2520× speedup and 5% higher routability.
In Fig. 20, the running time of our algorithm is plotted as
a function of the number of nets. Based on the least-squares
analysis, the empirical time complexity of our algorithm is
around n1.42 to the number of nets n.

Compared with the three state-of-the-art studies, the exper-
imental results show that our algorithm can achieve the best

Fig. 26. (a) Type 2-a potential overlay scenario. Color assignments
(b) and (c) CC and SS do not induce side overlay and (d) CS and SC induce
side overlays. Further, they may also induce the cut pattern conflicts.

Fig. 27. (a) Type 2-b potential overlay scenario. Color assignments
(b) and (c) CC and SS induce one unit of side overlays and (d) and (e)
CS and SC induce two units of side overlays. Further, CS may also induce
the cut conflicts.

Fig. 28. (a) Type 2-c potential overlay scenario. (b)–(e) Type 2-c poten-
tial overlay scenario does not induce side overlay regardless of the color
assignments.

Fig. 29. (a) Type 2-d potential overlay scenario. (b)–(d) Type 2-d poten-
tial overlay scenario does not induce side overlay regardless of the color
assignments.

quality and efficiency, with zero cut conflicts, smallest over-
lay length, and highest routability. A partial routing result of
our algorithm is shown in Fig. 21, where the odd cycle is
decomposed. The side overlays are no longer than one unit.
A partial routing result of [16] is shown in Fig. 22, where the
merging of the core patterns and the assistant core patterns
induces severe side overlays.
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Fig. 30. (a) Type 3-a potential overlay scenario. (b) Color assignment SS
induces side overlays. The assistant core pattern for B is shorter than B, or
the distance between the two assistant core patterns is smaller than dcore.
(c) Color assignment CC induces side overlays. (d) Color assignments CS
and SC do not induce side overlay.

Fig. 31. (a) Type 3-b potential overlay scenario. Color assignment
(b) CC induces side overlays, if the right side of A and top side of B
are merged, (c) SC induces side overlays, and (d) SS does not induce side
overlay.

Fig. 32. (a) Type 3-c potential overlay scenario. (b)–(e) Color assignments
CC, SS, and SC do not induce side overlay. (d) Color assignment CS induces
side overlays.

V. CONCLUSION

We have presented the first work that handles all over-
lay scenarios and applies the cut technique for decomposing
odd cycles during routing. We have proposed a novel overlay
constraint graph that captures all overlays in a given layout,
and a linear-time color flipping algorithm that enhances the
routing flexibility. Experimental results have shown that our
algorithm can achieve zero cut conflicts and the best quality
and efficiency among all published works.

Fig. 33. (a) Type 3-d potential overlay scenario. Color assignments
(b) and (c) CC and SS do not induce side overlay and (d) CS and SC induce
side overlays.

Fig. 34. (a) Type 3-e potential overlay scenario. (b)–(d) Type 2-e poten-
tial overlay scenario does not induce side overlay regardless of the color
assignments.

APPENDIX

COLOR ASSIGNMENTS FOR THE IDENTIFIED

POTENTIAL OVERLAY SCENARIOS

In the Appendix, we enumerate all the color assignments
for every potential overlay scenario, as shown in Figs. 24–34.
By the enumeration, we identify the color assignments that
induce minimum side overlays for every potential overlay sce-
nario. The identified color assignments constitute the color
rules, which gives our router valuable information during the
coloring stage. Note that some assistant core patterns that
do not merge with any pattern are not shown in the figures.
The symbols used in Figs. 24–34 are listed in Fig. 23.
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