
Stitch-Aware Routing for Multiple E-Beam Lithography∗

Shao-Yun Fang1, Iou-Jen Liu, and Yao-Wen Chang1,2

1Graduate Institute of Electronics Engineering, National Taiwan University, Taipei 106, Taiwan
2Department of Electrical Engineering, National Taiwan University, Taipei 106, Taiwan

{yuko703, yrliu}@eda.ee.ntu.edu.tw; ywchang@cc.ee.ntu.edu.tw

ABSTRACT
Multiple e-beam lithography (MEBL) is one of the most promis-
ing next generation lithography (NGL) technologies for high vol-
ume manufacturing, which improves the most critical issue of con-
ventional single e-beam lithography, throughput, by simultane-
ously using thousands or millions of e-beams. For parallel writing
in MEBL, a layout is split into stripes and patterns are cut by
stripe boundaries, which are defined as stitching lines. Critical
patterns cut by stitching lines could suffer from severe pattern
distortion or even yield loss. Therefore, considering the positions
of stitching lines and avoiding stitching line-induced bad patterns
are required during layout design. In this paper, we propose the
first work of stitch-aware routing framework for MEBL based on
a two-pass bottom-up multilevel router. We first identify three
types of stitching line-induced bad patterns which should not ex-
ist in an MEBL-friendly routing solution. Then, stitch-aware
routing algorithms are respectively developed for global routing,
layer/track assignment and detailed routing. Experimental re-
sults show that our stitch-aware routing framework can effectively
reduce stitching line-induced bad patterns and thus may not only
improve the manufacturability but also facilitate the development
of MEBL.

Categories and Subject Descriptors
B.7.2 [Integrated Circuits]: Design Aids

General Terms
Algorithms, Design, Performance

Keywords
Multiple electron beam lithography, stitch, routing, manufactura-
bility

1. INTRODUCTION
E-beam lithography (EBL) is one of the most expected Next

Generation Lithography (NGL) technologies for overcoming the
manufacturing limitations of conventional optical lithography. How-
ever, the relatively low throughput due to the maskless direct
write process constrains EBL from high volume manufacturing.
Thus, EBL was only applied to few applications such as pho-
tomask fabrication [15]. In recent years, the concept of multiple
e-beam lithography (MEBL) has been proposed, which utilizes
massively parallel exposure with thousands or even millions of
beams to dramatically improve the throughput. Also, several in-
novative MEBL systems have been under development and have

∗
This work was partially supported by IBM, SpringSoft, TSMC, Academia

Sinica, and NSC of Taiwan under Grant No’s. 101-2221-E-002-191-MY3,
NSC100-2221-E-002-088-MY3, NSC 99-2221-E-002-207-MY3, and NSC 99-
2221-E-002-210-MY3.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC’13, May 29 - June 07, 2013, Austin, TX, USA.
Copyright 2013 ACM 978-1-4503-2071-9/13/05 ...$15.00.

Stitching line

field

stripes

(a) (b)

Wire Via Stitching line

Figure 1: Layout division and overlay error in MEBL. (a)

A layout is split into stripes and the stripe boundaries are

defined as the stitching lines. (b) Features cut by stitching

lines suffer from different degrees of pattern distortion.

shown very promising lithography performance and cost effective-
ness [11, 13, 14, 17].

Due to the deflection limitation of each beam and parallel
writing strategies in MEBL, a layout (a main field) is split into
stripes (subfields) as shown in Figure 1(a), and we define the
stripe boundaries as the stitching lines. Since patterns in differ-
ent stripes are written by different beams or in different writing
passes, a pattern cut by a stitching line suffers from overlay er-
ror between two beams or two writing passes [7, 16]. Note that
the overlay error could cause different impacts on different types
of patterns cut by stitching lines. As illustrated in Figure 1(b),
a horizontal wire can be patterned well even if an overlay error
exists. On the other hand, some patterns with critical dimension,
such as vias or vertical wires, can have severe pattern distortion
and electrical variation due to the overlay error. Therefore, it
is desirable to consider stitching lines for MEBL-friendly layout
designs to enhance manufacturability. However, to the best of
our knowledge, no previous work has addressed the stitching line-
induced printability problems during physical design for MEBL.

In current semiconductor manufactruing, metal layers become
one of the most critical parts with respect to reliability, manu-
facturability, and circuit performance, and thus routing plays a
crucial role in the VLSI design flow. In MEBL, routing without
considering stitching lines may cause stitching line-induced bad
patterns. As shown in Figure 2(a), without stitching line consid-
eration, a via is cut by the stitching line on the wire A, and a part
of the wire B is vertically routed on the stitching line. Another
undesired pattern occurs on the wire C, which is a short wire
segment cut by the stitching line with a landing via. We define
this type of patterns as short polygons. Short polygons may also
cause severe manufacturing defects, which will be explained in
Section 2. Figure 2(b) shows a better routing result, where no
stitching line-induced bad pattern is produced. Avoiding vias cut
by stitching lines and avoiding wires vertically routed on stitch-
ing lines are not difficult. For example, removing routing tracks
vertically overlapped with stitching lines can prevent wires from
vertically routing on stitching lines. However, avoiding the gener-
ation of short polygons is not trivial. In fact, considering this type
of bad patterns could significantly increase the design complexity.

In this paper, we propose the first work of stitch-aware routing
for MEBL, which minimizes the number of stitching line-induced
bad patterns during routing. The framework is based on a two-

Authorized licensed use limited to: University of Illinois. Downloaded on July 09,2020 at 04:36:27 UTC from IEEE Xplore. Restrictions apply.

 A

B

C c

B c

 C

Wire on metal-1
Wire on metal-2

Terminal on metal-1
Terminal on metal-2

(a) (b)

A c

Short polygon

Figure 2: Routing with and w/o stitching consideration.

(a) Stitching line-induced bad patterns are generated with-

out considering stitching lines during routing. (b) A better

routing solution derived from a stitch-aware router.

Defect on the
short polygon

Dithering Rendering A short
polygon

Gray-level
transformation

Figure 3: The rasterization process of a short polygon. A

severe defect occurs due to dithering with error diffusion.

pass bottom-up multilevel router (similar to [3] for double via
optimization). We first identify three types of stitching line-
induced bad patterns and establish three corresponding stitch-
aware routing constraints. Then, the stitch-aware routing algo-
rithms are respectively proposed in each routing stage: global
routing, layer/track assignment and detailed routing. Experi-
mental results show that our algorithms can effectively avoid the
generation of stitching line-induced bad patterns for MEBL.

The rest of this paper is organized as follows: Section 2 intro-
duces the three routing constraints. In Section 3, the stitch-aware
routing algorithms in global routing, layer/track assignment, and
detailed routing are respectively presented. Section 4 reports our
experimental results. Finally, we conclude our work in Section 5.

2. STITCH-AWARE ROUTING CONSTRAINTS
As mentioned in Section 1, patterns cut by stitching lines suf-

fer from overlay errors between two different beams or two dif-
ferent writing passes. Although these pattern segmentations are
inevitable during circuit design, stitching lines should avoid cut-
ting critical patterns to reduce severe pattern distortion or even
yield loss. For example, as mentioned in Section 1, vias should
not be cut by stitching lines and wires should not vertically route
on stitching lines.

Another type of stitching line-induced bad patterns, short poly-
gons, is due to the data preparation flow in MEBL. Because of the
maskless lithography process, rasterization is required to trans-
form a layout into a pixel-based black/white bitmap, and thus
patterns can be exposed on a wafer by controlling each indepen-
dent beam to be “on” or “off” [7, 10]. Rasterization consists of
two major steps: (1) rendering followed by (2) dithering with
error diffusion. In rendering, a layout is sliced into grids, and
patterns are converted into pixel-based gray-level data with in-
tensity proportional to the pattern coverage in each pixel. Then,
in dithering, the resulting gray-level bitmap is transformed into
a black/white bitmap. The error of each pixel due to dithering is
not neglected but diffused to its neighboring unprocessed pixels.

A short polygon may cause a severe defect after the rasteri-
zation process. Figure 3 shows an example. The short polygon
cut by the stitching line undergoes rendering and dithering dur-
ing the data preparation flow. Due to the error diffusion process,

Short polygon

Via violation Routing violation Short polygon violation
(a) (b) (c)

Stitch unfriendly region

Figure 4: Three routing constraints for stitch-aware routing.

(a) Via constraint. (b) Vertically routing constraint. (c) Short

polygon constraint.

the short polygon has irregular pixels on the bottom-right corner.
These problematic pixels could account for a large percentage of
the pixels associated with the short polygon and thus can result
in serious pattern distortion after e-beam exposure. Then, the
misalignment between the polygon and the via becomes a cir-
cuit defect or causes unacceptable electrical variation. Therefore,
short polygons with landing vias should be avoided in a routing
solution for better MEBL control.

Hence, given a set of stitching lines, we define the following
three routing constraints:

• Via constraint: vias cannot be cut by stitching lines (see
Figure 4(a)).

• Vertical routing constraint: wires cannot vertically route on
stitching lines (see Figure 4(b)).

• Short polygon constraint: vias should not land on short
polygons. As illustrated in Figure 4(c), we define the area
within the distance ε from a stitching line as the stitch un-
friendly region of the stitching line. A horizontal wire has a
short polygon violation if it satisfies the following two con-
ditions: (1) The wire is cut by a stitching line. (2) At least
a line end of the wire lies in the corresponding stitch un-
friendly region with a landing via. Therefore, in Figure 4(c),
the upper wire has a short polygon violation, and the lower
wire is a preferred routing instance without any violation.

Note that in our routing framework, the via constraint and
the vertical routing constraint are hard constraints that a routing
solution must always satisfy, and the short polygon constraint is
a soft constraint that our routing framework should optimize.

3. STITCH-AWARE ROUTING FRAMEWORK
In this section, stitch-aware global routing, layer/track assign-

ment, and detailed routing are presented in the following subsec-
tions.

3.1 Stitch-Aware Global Routing
In the global routing stage, a routing plane is first divided

into global tiles and transformed into a routing graph, in which
a vertex represents a global tile and each pair of adjacent global
tiles is connected by an edge, as shown in Figure 5(a). Then, nets
sequentially find their global routing paths on the graph with
minimized routing costs. The routing cost of a routing path is
usually computed according to the routing congestion on the path.

Resource estimation in global routing for MEBL is quite dif-
ferent from conventional routing problems due to the existence of
stitching lines. For example, in Figure 5(b), the capacity of each
boundary (the maximum number of wires that can pass through
the boundary) of the global tile is originally six without consider-
ing stitching lines. However, the capacities of the top boundary
and the bottom boundary are reduced by one since no wire can
route on the track occupied by the stitching line due to the verti-
cal routing constraint. Furthermore, it is undesirable that many

Authorized licensed use limited to: University of Illinois. Downloaded on July 09,2020 at 04:36:27 UTC from IEEE Xplore. Restrictions apply.

line ends of vertical segments lie in the same tile. As shown in
Figure 5(b), only two vertical tracks are not in stitch unfriendly
regions. If there are three vertical segments whose line ends lie
in the tile, at least one line end will lie in the stitch unfriendly
region, and the line end may cause a short polygon violation on
the connected horizontal wire, as the segment C in Figure 5(b).

To consider both of the situations, in a global routing graph,
each edge is assigned an edge capacity indicating the maximum
number of wires that can pass through the tile boundary without
overflow, and each vertex is also assigned a vertex capacity denot-
ing the number of tracks not in stitch unfriendly regions. Then,
the cost of an edge ei (ψe(i)) and the cost of a vertex vj (ψv(j))
are respectively defined as follows:

ψe(i) = 2de(i)/ce(i) − 1, (1)

ψv(j) = 2dv(j)/cv(j) − 1, (2)

where ce(i) is the capacity of ei, cv(j) is the capacity of vj , de(i)
is the demand of ei, which is the number of segments that have
routed on ei, and dv(j) is the demand of vj , which is the number
of line ends that have lain on vj . Thus, the routing cost of a
global routing path is the summation of the vertex costs and the
edge costs in the path.

C B A

Partitioned layout Global routing graph
(a)

(b)

Vertical wire
Horizontal wire
Via
Stitching line
Stitch unfriendly region

Short polygon

Figure 5: Global routing model and routing resource estima-

tion for MEBL. (a) A layout is divided into global tiles and

transformed into a graph model. (b) The routing resource is

reduced due to the stitching lines.

3.2 Stitch-Aware Layer Assignment
Layer/track assignment has been proven as an effective inter-

mediate stage between global routing and detailed routing [1, 6]
for improving the routing quality of high complexity designs. In
addition, many manufacturability issues can be optimized during
layer/track assignment, such as crosstalk, antenna effect, and wire
density uniformity [4, 9, 12, 18]. In our work, stitch-aware layer
and track assignment algorithms are also proposed for optimizing
stitching line-induced bad patterns.

In layer assignment, we assign the vertical (horizontal) seg-
ments in a column (row) panel to different vertical (horizontal)
routing layers. A column (row) panel is defined as a column
(row) of global tiles in a global routing graph. The conventional
objective in layer assignment is to uniformly distribute segments
in a panel. However, as mentioned in Section 3.1, line ends of
segments should be also scattered to different layers to avoid gen-
erating short polygons.

To solve the stitch-aware layer assignment problem, we first
construct a segment conflict graph for each panel, in which a ver-
tex vi represents a segment i and an edge connecting two vertices
if the two segments intersect in some tiles. For a column panel,
we set an edge weight w(vi, vj) for each edge (vi, vj) as follows:

w(vi, vj) = Dsegment(vi, vj) +Dend(vi, vj), (3)

A

E B

C D

7

4 6

7

7

7

6

6

r1
r2
r3
r4
r5

A

B C D

E

A

E B

C D

4

(a) (b) (c)

Row

Figure 6: Layer assignment considering segment and line-

end uniformities. (a) A set of segments in a vertical panel.

(b) The corresponding segment conflict graph. (c) A layer

assignment solution by solving the maximum-cut k-coloring

problem.

where Dsegment(vi, vj) is the maximum segment density in the
rows where the segment i and the segment j are overlapped, and
Dend(vi, vj) is the maximum line-end density in the rows where
the line ends of i and j are overlapped. (Note that we simply
remove the second item in Equation (3) for row panels since we
consider line-end densities only in column panels.) Figure 6(b)
shows a conflict graph for the segments in a column panel shown
in Figure 6(a). To uniformly distribute segments and line ends
to k layers, the layer assignment problem can be solved by find-
ing a maximum-cut k-coloring solution [5] of the segment conflict
graph, which is equivalent to finding a k-coloring solution with the
minimum total edge weight [5]. Figure 6(c) shows a three-coloring
solution with the minimum total edge weight of the segment con-
flict graph.

Since the maximum-cut k-coloring problem is NP-complete [5],
previous work has proposed a heuristic approach that first con-
structs a maximum spanning tree on a conflict graph and then
solves the k-coloring problem on the tree. Note that a tree is
always k-colorable when k ≥ 2. This heuristic can solve the
maximum-cut k-coloring problem well as k equals two; however,
as k is greater than two, solving the maximum-cut k-coloring
problem with the maximum spanning tree approach may degrade
the solution quality since more edges can be simultaneously con-
sidered as more colors are available. As illustrated in Figures 7(a)
and (b), if three vertical layers are available, after constructing
a maximum spanning tree and three-coloring the tree according
to the tree level of each vertex, a layer assignment solution is
generated with total edge weight equal to 13.

A

E B

C D

4

A

E B

C D

7

6

7

7

A

E B

C D

7

6

A

E B

C D

27

23

18

12

20
B D C,E

A

7
7

4

(a) (b)

(c) (d) (e)

Tree level = 0

Tree level = 1

Tree level = 2

Figure 7: Heuristics for solving the maximum-cut k-coloring

problem. (a)(b) The maximum spanning tree approach.

(c)(d)(e) Our algorithm that can generate a better solution.

In this work, we propose another heuristic algorithm to get
better solutions. We first compute the vertex weight for each
vertex by summing the weights of the incident edges. Then, we
find a set of k-colorable vertices with the maximum total vertex
weight. Although this problem is NP-complete in general graphs,
it can be solved in polynomial time for segment conflict graphs,
which are interval graphs, by using a minimum cost flow algo-
rithm [2]. As shown in Figure 7(c), V1 = {vB , vC , vD, vE} is a

Authorized licensed use limited to: University of Illinois. Downloaded on July 09,2020 at 04:36:27 UTC from IEEE Xplore. Restrictions apply.

Track 1 2 3 4

r1

r2

r3

r4

r5
Row

5
A

B

C

D

Track 1 2 3 4

r1

r2

r3

r4

r5

5
sA sC

sB

sD

tA

tC

tD tB

A

B

C

D

Forbidden vertex
Source/target vertex

Track vertex

sA

tA

0 1 3 4

0 1 3 4

(a) (b) (c) (d)

r1

r2

r3

Figure 8: The ILP-based track assignment approach. (a) A track assignment instance. (b) The multi-commodity flow model

of the segment A. (c) The multi-commodity flow model of all segments and the solution derived from the ILP formulation.

(d) The corresponding track assignment solution.

three-colorable vertex set in the segment conflict graph with the
maximum total vertex weight, and {vB}, {vD} and {vC , vE} are
the three-coloring groups of V1. The algorithm then finds the next
k-colorable vertex set with the maximum total vertex weight on
the remaining graph. To merge the coloring groups of the two
vertex sets, a perfect bipartite matching algorithm is applied to
minimize the total conflict edge weight. As illustrated in Fig-
ure 7(d), two pseudo coloring groups ∅ are first created since only
the vertex vA remains, and thus the three-coloring groups of the
second vertex set V2 are {vA}, ∅ and ∅. To combine the coloring
groups of V1 and V2, a complete bipartite graph is constructed
and the edge weights are set as the total conflict edge weight
between two groups. By solving the minimum weight perfect bi-
partite matching problem, coloring groups are merged with the
minimum conflict edge weight. The above process is performed
iteratively until no vertex is left. Figure 7(e) shows the layer
assignment result with smaller total edge weight equal to 4.

3.3 Short Polygon-Avoid Track Assignment
In track assignment, segments of the same layer in a panel

are assigned exact track numbers, which is a crucial stage for
short polygon avoidance. A desired track assignment solution
which can avoid short polygon generation is a track assignment
without bad ends. A bad end is a line end of a vertical wire
segment lying in the stitch unfriendly region of a stitching line,
and the connected horizontal wire is cut by the stitching line. For
example, the lower end of the wire segment C in Figure 5(b) is
a bad end. To derive a track assignment solution without bad
ends, an ILP-based algorithm and a graph-based algorithm are
proposed, which are detailed in the following subsections. Note
that the short polygon-avoiding track assignment algorithms are
only applied to column panels. Segments in row panels can be
assigned by using conventional track assignment algorithms.

3.3.1 ILP-Based Approach
First, the short polygon-avoiding track assignment problem

can be intuitively transformed into a multi-commodity flow model,
which is a directed graph G = (V,E). Figure 8(a) shows a track
assignment instance. To find an exact track number for the seg-
ment A, for example, the multi-commodity flow graph model is
constructed as shown in Figure 8(b), where a track vertex repre-
sents a track in a global tile, a forbidden vertex is a track occupied
by a stitching line, and the source vertex sA and the target vertex
tA are the top end and the bottom end of the segment A. The
source edges connect sA to the track vertices of the tile where
the top end of A lies. Similarly, the target edges connect the
track vertices of the tile where the bottom end of A lies to tA. A

source/target edge is removed if the line end becomes a bad end
on the corresponding track. For example, sA causes a bad end
if it starts on the second track, and thus the second source edge
is removed from the graph. Also, track vertices of adjacent tiles
are connected with track edges, and the edge weight of a track
edge is set to be the difference of the track numbers of the two
track vertices to minimize wirelength and the number of routing
bends. The whole multi-commodity flow graph model of the four
segments is shown in Figure 8(c). Then, we find a track assign-
ment solution with an ILP formulation. The notation used in our
ILP formulation is listed as follows:

• K: a set of segments in a track assignment problem.

• s(k): the source vertex of the segment k.

• t(k): the target vertex of the segment k.

• Vtrack a set of track vertices.

• w(u, v): the weight of the directed edge (u, v).

• fk(u, v): 0-1 integer variable that denotes if the segment k
is routed through the directed edge (u, v).

• C: a set of crossed edge pairs.

Based on the notations, the short polygon-avoiding layer as-
signment problem can be formulated as follows:

minimize
∑

(u,v)∈E

(
w(u, v)×

∑
k∈K

fk (u, v)

)

subject to
∑

(s(k),v)∈E

fk(s(k), v) = 1, ∀k ∈ K, (4)

∑
(u,t(k))∈E

fk(u, t(k)) = 1, ∀k ∈ K, (5)

∑
u∈V

fk(u, v) =
∑
w∈V

fk(v, w), ∀k ∈ K, ∀v ∈ Vtrack, (6)

∑
u∈V

∑
k∈K

fk(u, v) ≤ 1, ∀v ∈ Vtrack, (7)

∑
k∈K

fk(u1, v1) +
∑
k∈K

fk(u2, v2) ≤ 1, ∀ ((u1, v1), (u2, v2)) ∈ C. (8)

The objective of the ILP formulation is to minimize the to-
tal edge weight of a flow solution such that the wirelength and

Authorized licensed use limited to: University of Illinois. Downloaded on July 09,2020 at 04:36:27 UTC from IEEE Xplore. Restrictions apply.

A

B

C

D

E
r1

r2

r3

r4

r5

A

B

C

D

E

Track 1 2 3 4

r1

r2

r3

r4

r5

C

D

E C

D

E

c1

c2

c3 d1

d2

e1

e2

e3

e4

2

2

2
3

3

Min track constraint graph

Max track constraint graph

(a) (b) (c) (d) (e)

2

2

4

4

4
3

3

d

1

1

1

c1

c2

d1

d2

e1

e2

e3

e4

s

s

d
c1

c2

d1

d2

e2

e3

e4

c3

3

4

4

4

4

0

5

c3

e1

Figure 9: The graph-based track assignment approach. (a) A track assignment instance. (b) A segment order is first

determined. (c) The segments C,D and E between two stitching lines are simultaneously considered and are divided into

intervals. (d) The feasible track assignment solution space of each interval is computed by using the minimum and maximum

track assignment constraint graphs (c) The final track assignment solution of C,D and E.

the number of wire bends can be minimized. Constraint (4) and
Constraint (5) ensure that each segment can find a unique path
from its source vertex to the target vertex. Constraint (6) is used
to guarantee that the number of paths flowing into a node equals
that draining from the node. Constraint (7) guarantees that a
track in a tile is occupied by at most one segment. Finally, Con-
straint (8) prevents segments from crossing with each other.

Theorem 1. In the above ILP formulation, the number of vari-
ables is O(T 2R) and the number of constraints is O(TR|K| +
T 4R), where T is the number of tracks in a column panel and R
is the number of rows in the global routing graph

Note that the complexity is dominated by Constraints (6) and
(8).

Using “doglegs” to avoid short polygon generation is one of the
advantage of the ILP-based approach. However, since the short
polygon-avoiding track assignment process is performed for ev-
ery panel in all vertical layers, the runtime of iteratively solving
the ILP formulation may be prohibitively long as the chip size
increases. Therefore, we propose another graph-based track as-
signment heuristic, which can efficiently utilize doglegs for short
polygon avoidance.

3.3.2 Graph-Based Approach
The graph-based short polygon-avoiding track assignment al-

gorithm first determines the segment order in a panel, and then
tries to resolve bad ends with doglegs by using a graph-based
algorithm.

The approach starts from assigning longer segments next to
stitching lines. As shown in Figures 9(a) and (b), the segments
B,C and E are placed adjacent to stitching lines. Longer seg-
ments have larger flexibility to avoid short polygon generation
by applying doglegs. Then, some bad ends of those longer seg-
ments will be generated if the segments do not change their track
numbers. For example, the bottom end of B, the bottom end
of C, and the top end of E are currently bad ends. After that,
segments not overlapped with the bad ends are assigned next to
those longer segments such that the bad ends can be easily re-
solved with doglegs. Therefore, as illustrated in Figure 9(b), the
segment A is assigned next to B and the segment D is assigned
next to E. For the remaining segments having less impact on bad
ends, the track numbers are arbitrarily assigned.

After determining the segment order, doglegs are used to re-
solve bad ends. A set of segments between two stitching lines are
considered at a time. Each segment is first divided into inter-
vals according to global tiles, as the segments C,D, and E shown

in Figure 9(c). Then, two constraint graphs are constructed to
record the geometry relationship among these intervals. As illus-
trated in Figure 9(d), the first one is theminimum track constraint
graph, where a vertex represents an interval and a directed edge
(vi, vj) indicates that the two intervals are overlapped in the x-
direction and the interval i is left to the interval j. A dummy
vertex d is created and connected to a vertex vi if the interval i
should not be assigned to the leftmost track. For example, the
interval c3 has a bad end if it is assigned to the leftmost track be-
tween the two stitching lines, and thus a dummy vertex is created
and connected to vc3 through the edge (d, vc3) in the minimum
track constraint graph. After creating a source vertex s and con-
necting s to the vertices of the leftmost intervals and the dummy
vertices, a longest path algorithm is applied to compute the min-
imum track number m of each interval, which indicates the left-
most feasible track number. For the maximum track constraint
graph, the construction is almost the same except that an edge
(vi, vj) connects the vertex of the interval i right to the vertex of
the interval j and a dummy vertex connected to a vertex vi if the
interval i should not be assigned to the rightmost track. A similar
algorithm is applied to compute the maximum track number M
of each interval. As shown in Figure 9(d), the two numbers of
a vertex in the minimum and maximum track constraint graphs
give a feasible solution space [m,M] of track assignment for each
corresponding interval.

Finally, we sequentially determine the track numbers from
the leftmost segment to the rightmost segment between the two
stitching lines according to their feasible solution spaces. The
wirelength and the number of bends of each segment are greedily
optimized during track assignment. For example, all intervals of
the segment C are assigned to the second track for wirelength and
bend optimizations, and the final assignment solution is shown in
Figure 9(e).

3.4 Stitch-Aware Detailed Routing
The final stage of our routing framework is stitch-aware de-

tailed routing, which finds pin-to-segment and segment-to-segment
detailed routes with a conventional A�-search routing algorithm [8].
To satisfy the via and vertical routing constraints, wires passing
through stitching lines can only route in the x-direction (perpen-
dicular to stitching lines). For minimizing the number of gener-
ated short polygons, we give a larger routing cost if a wire in a
stitch unfriendly region routing in the z-direction, and thus a de-
tailed path with the minimum number of line ends lying in stitch
unfriendly regions will be found.

Authorized licensed use limited to: University of Illinois. Downloaded on July 09,2020 at 04:36:27 UTC from IEEE Xplore. Restrictions apply.

Table 1: Experimental results that compare the effectiveness and efficiency among different track assignment algorithms.

Circuit
w/o stitch consideration ILP-based Approach Graph-based Approach

Rout. (%) #VV #SP CPU (s) Rout. (%) #VV #SP CPU (s) Rout. (%) #VV #SP CPU (s)
Struct 99.90 584 3282 2 100.00 597 23 505 100.00 597 15 2

Primary1 99.80 212 1431 1 100.00 215 1 8909 100.00 226 0 1
Primary2 98.63 643 5268 6 100.00 667 161 74780 100.00 688 76 6
S5378 96.32 660 584 1 99.10 643 37 3904 99.23 645 9 1
S9234 98.67 312 452 1 99.90 297 30 2983 99.90 294 20 1
S13207 97.43 45 1212 2 99.87 58 92 12767 100.00 58 62 2
S15850 97.14 43 1524 2 99.75 63 124 14912 99.76 62 90 2
S38417 97.89 24 3499 2 NA NA NA > 100000 99.73 41 182 5
S38584 97.71 2163 4020 10 NA NA NA > 100000 99.32 2037 153 11
Dma 96.00 1748 5242 5 99.40 1764 117 3084 99.49 1792 46 6
Dsp1 97.08 2326 5613 4 99.82 2434 59 4743 99.81 2364 17 7
Dsp2 96.82 2367 5770 4 99.74 2389 77 4133 99.75 2402 16 5
Risc1 96.09 3149 8947 11 99.56 3188 161 9883 99.62 3200 44 11
Risc2 96.64 3199 8801 8 99.67 3233 111 8881 99.66 3248 42 9
Comp. 1.000 1.000 1.000 1.0 1.023 1.070 0.034 4159.5 1.022 1.110 0.022 1.1

4. EXPERIMENTAL RESULTS
Our algorithm was implemented in the C++ programming lan-

guage on a 2.93 GHz Linux workstation with 48 GB memory. The
minimum cost flow problem and the minimum weight bipartite
matching problem in layer assignment were solved by adopting
the LEDA package [20], and the ILP formulation in track assign-
ment was solved by using the CPLEX12.3 library [19]. In our
routing framework, the number of stitching lines was set to be
that of global tiles in a row, and the stitching lines were uni-
formly distributed in a layout. In addition, the tracks adjacent
to stitching lines fell into stitch unfriendly regions.

We show the effectiveness of avoiding short polygon genera-
tion by applying three different track assignment approaches: (1)
track assignment without considering stitching lines, (2) track
assignment by solving the ILP formulation, and (3) track assign-
ment by applying the graph-based algorithm. Note that all the
three approaches use the same stitch-aware algorithms in other
routing stages. Two suits of benchmarks were used, the MCNC
benchmarks and the Faraday benchmarks. The experimental re-
sults are shown in Table 1, where “Rout.” gives the routability,
“#VV” reports the number of via violations, “#SP” shows the
number of short polygon violations, and “CPU” lists the runtime
in second. Due to the fixed pin positions of nets, the three ap-
proaches have similar numbers of via violations. On the other
hand, the results show that by considering stitching lines, both
the ILP-based approach and the graph-based approach slightly
improve the routability. It is because not considering stitching
lines can cause lots of vertical routing violations. Since the rout-
ing constraint is a hard constraint a routing solution must satisfy,
the violated wires are ripped-up and will be rerouted in the de-
tailed routing stage, which may cause lots of failed nets. Also,
both the approaches can effectively reduce the number of short
polygon violations by more than 96%. However, the ILP-based
approach is too time-consuming to generate a routing solution
in a reasonable runtime, and thus the graph-based approach is
more appropriate for large scale routing instances. Note that al-
though the ILP formulation can find a track assignment solution
without any short polygon if such a solution exists, the ILP-based
approach generates more short polygon violations than the graph-
based approach. It is because once the ILP formulation fails to
find a solution for a track instance, we directly route the segments
in the detailed routing stage, which may cause more short poly-
gons. In contrast, if the graph-based approach fails to find a legal
solution, we can simply remove the rightmost segment and keep
other segments connected.

5. CONCLUSIONS
In this paper, we have proposed the first work of stitch-aware

routing framework for MEBL. We first identify three types of
stitching line-induced bad patterns which could cause severe pat-

tern distortion, electrical variation, or even yield loss. Then, we
provide solutions to avoid generating these bad patterns during
each routing stage. Experimental results show that our algo-
rithms can efficiently and effectively reduce the number of short
polygons. To remove the via violations due to the fixed pin po-
sitions of nets, it is also desirable to develop stitch-aware algo-
rithms at the placement stage, which is our future work to further
improve the manufacturability and facilitate the development of
MEBL.

6. REFERENCES
[1] Batterywala et al., “Track assignment: a desirable intermediate

step betweeen global routing and detailed routing,” Proc. ICCAD,
pp. 59–66, 2002.

[2] Carlisle and Lioyd, “On the k-coloring of intervals,” DAM, vol. 59,
no. 3, pp. 225–235, 1995.

[3] Chen et al., “Full-chip routing considering double-via insertion,”
IEEE TCAD, vol. 27, no. 5, pp. 844–857, 2008.

[4] Chen et al., “A novel wire-density-driven full-chip routing system
for CMP variation control,” IEEE TCAD, vol. 28, no. 2,
pp. 193–206, 2009.

[5] Cho et al., “Fast approximation algorithms on maxcut, k-coloring,
and k-color ordering for VLSI applications.” IEEE TC, vol. 47,
no. 11, pp. 1253–1266, 1998.

[6] Cong et al., “DUNE–a mulitilayer gridless routing system,” IEEE
TCAD, vol. 20, no. 5, pp. 633–647, 2011.

[7] Hakkennes et al., “Demonstration of real time pattern correction
for high throughput maskless lithography,” Proc. SPIE, vol. 7970,
pp. 79701A, 2011.

[8] Hart et al., “A formal basis for the heuristic determination of
minimum cost paths,” IEEE SSC, vol. 4, no. 2, pp. 100-107, 1968.

[9] Ho et al., “Crosstalk- and performance-driven multilevel full-chip
routing,” IEEE TCAD, vol. 24, no. 6, pp. 869–878, 2005.

[10] Hung et al., “Bottlenecks in data preparation flow for multi-beam
direct write,” Proc. SPIE, vol. 8166, pp. 81662C, 2011.

[11] Klein et al., “PML2: the maskless multibeam solution for the 22nm
node and beyond,” Proc. SPIE, vol. 7271, pp. 72710N, 2009.

[12] Lee and Wang, “Simultaneous antenna avoidance and via
optimization in layer assignment of multi-layer global routing,”
Proc. ICCAD, pp. 312–318, 2010.

[13] Lin, “Future of multiple-e-beam direct-write systems,” Proc. SPIE,
vol. 8323, pp. 832302, 2012.

[14] McChord et al., “REBL: design progress toward 16 nm half-pitch
maskless projection electron beam lithography,” Proc. SPIE,
vol. 8323, pp. 832311

[15] Rizvi, “Handbook of photomask manufacturing technology,” Taylor
& Francis, 2005.

[16] Ronse, “E-beam maskless lithography: prosoects and challenges,”
Proc. SPIE, vol. 7637, pp. 76370A, 2010.

[17] Wieland et al., “MAPPER: high throughput maskless lithography,”
Proc. SPIE, vol. 7637, pp. 76370F, 2010.

[18] Wu et al., “Antenna avoidance in layer assignemnt,” IEEE TCAD,
vol. 25, no. 4, pp. 734–738, 2006.

[19] IBM ILOG CPLEX Optimizer. http://www-01.ibm.com/software/
integration/optimization/cplex-optimizer/

[20] The LEDA package. http://www.algorithmic-solutions.com/leda

Authorized licensed use limited to: University of Illinois. Downloaded on July 09,2020 at 04:36:27 UTC from IEEE Xplore. Restrictions apply.

